Program: BE Civil Engineering

Curriculum Scheme: Revised 2016
 Examination: Third Year SemesterV
 Course Code: CEC501 and Course Name: Structural Analysis II

Time: 1 hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks.

Q1.	For a given truss: Member = 10, Reaction=4 and Joints=6, the truss is
Option A:	Statically determinate
Option B:	Statically indeterminate
Option C:	Stable
Option D:	Unstable
Q2.	In two hinged arches, how many unknown forces exist?
Option A:	One unknown
Option B:	Two unknowns
Option C:	Three unknowns
Option D:	Four unknowns
Q3.	The degree of static indeterminacy of the frame with a single bay double storey with both ends fixed is
Option A:	4
Option B:	5
Option C:	6
Option D:	7
Q4.	Internal deformation caused by real loads will be in a linear elastic member, when P is normal force, L is length of member, A is cross-sectional area of member, E is modulus of elasticity
Option A:	1/4 PL/AE
Option B:	$1 / 3 \mathrm{PL} / \mathrm{AE}$
Option C:	1/2 PL/AE
Option D:	PL/AE
Q5.	A propped cantilever of span L is fixed at end A and simply supported at end B. It is subjected to udl of intensity w per unit length. Then the reactions at A and B are
Option A:	$\mathrm{RA}=(5 / 8) \mathrm{WL}, \mathrm{RB}=(3 / 8) \mathrm{WL}$
Option B:	$\mathrm{RA}=\mathrm{WL} / 2, \mathrm{RB}=\mathrm{WL} / 2$
Option C:	$\mathrm{RA}=(3 / 8) \mathrm{WL}, \mathrm{RB}=(5 / 8) \mathrm{WL}$
Option D:	$\mathrm{RA}=\mathrm{WL} / 4, \mathrm{RB}=(3 / 4) \mathrm{WL}$

Q6.	The Compatibility equation form for Matrix method of flexibility is Where [DI] = Matrix of displacement in the structure due to redundant actually [DR] = Matrix of displacement in released structure due to load corresponding to unit action of load [F] = Flexibility coefficient matrix $[R]=$ Unknown support reaction matrix
Option A:	$\left[D_{1}\right]=\left[D_{R}\right]+[F][R]$
Option B:	$\left[\mathrm{D}_{1}\right]=\left[\mathrm{D}_{\mathrm{R}}\right]-[\mathrm{F}][\mathrm{R}]$
Option C:	$\left[D_{R}\right]=\left[D_{1}\right]-[F][R]$
Option D:	$\left[\mathrm{D}_{\mathrm{R}}\right]=\left[\mathrm{D}_{\mathrm{l}}\right]+[\mathrm{F}][\mathrm{R}]$
Q7.	The lack of fit if it is induced, all the members in the redundant frame will be in
Option A:	Stress
Option B:	Tension
Option C:	Compression
Option D:	zero force state
Q8.	The principle of superposition states that
Option A:	Total BMD = Free BMD+ Fixed BMD
Option B:	Total BMD $=$ Free BMD+ Fixed Shear
Option C:	Total BMD = Free BMD + Free Shear
Option D:	Total BMD= Free BMD+ Fixed Deflection
Q9.	The Flexibility in the structure can be defined as
Option A:	Displacement or rotation produced by unit force or moment
Option B:	Rotation produced by non-unit force
Option C:	Slope produced by non-unit force
Option D:	Unit displacement produced by non-unit force
Q10.	The order of matrix is defined in the flexibility is based on
Option A:	Number of Redundant present in the beam externally and available equilibrium equation
Option B:	Number of Redundant present in the beam internally
Option C:	Number of unknown reactions
Option D:	Equilibrium equation
Q11.	What is the relation in flexibility and stiffness matrix
Option A:	they are square matrix
Option B:	the diagonal elements are nonzero and having positive values
Option C:	element $\mathrm{ij}=$ element ji
Option D:	they are inverse of each other
Q12.	The effect of moment applied at one joint is calculated on the other opposite joint by multiplying the moment applied by a certain factor called as.
Option A:	Stiffness factor
Option B:	Shear factor

Option C:	Carry over factor
Option D:	Distribution factor
Q13.	How many slope deflection equations are possible if there are 4 supports
Option A:	0
Option B:	6
Option C:	4
Option D:	3
Q14.	The ratio of the stiffness of a beam at the near end when the far end is fixed to stiffness of the beam at the near end when the far end is hinged is
Option A:	1.33
Option B:	0.33
Option C:	0.5
Option D:	1
Q15.	Moment required to rotate near end of prismatic beam through unit angle, the far end being fixed, will be
Option A:	El/L
Option B:	2EI/L
Option C:	3EI/L
Option D:	4EI/L
Q16.	In moment distribution method, the sum of distribution factor at the Fixed end is
Option A:	Infinity
Option B:	1
Option C:	0.5
Option D:	None of the option
Q17.	The carryover factor in a prismatic member whose far end is Hinge is
Option A:	0
Option B:	Half
Option C:	0.75
Option D:	0.25
Q18.	A propped cantilever beam of span L is loaded with u.d.I of intensityw/unit length, all through the span. Bending Moment at the fixedendis
Option A:	$\mathrm{WL}^{2} / 8$
Option B:	$\mathrm{WL}^{2} / 4$
Option C:	$\mathrm{WL}^{2} / 10$
Option D:	WL ${ }^{\text {/ }} 12$
Q19.	A two-span continuous beam having equal spans each of length L is subjected to a uniformly distributed load w per unit length. End supports are Simply Supported. The beam has constant flexural rigidity. The bending moment at the middle support is

Option A:	$\mathrm{WL}^{2} / 4$
Option B:	$\mathrm{WL}^{2} / 8$
Option C:	$\mathrm{WL}^{2} / 10$
Option D:	$\mathrm{WL}^{2} / 12$
Q20.	The shape factor for a solid Diamond section with equal side as "a" is
Option A:	2
Option B:	1.5
Option C:	2.5
Option D:	3
Q21.	The moment which makes all the fibres at the section to yield is known as
Option A:	Flexural rigidity
Option B:	Moment of resistance
Option C:	Plasticmoment capacity
Option D:	Yield moment
Q22.	The plastic modulus of a section is 4.8×10-4 ${ }^{3}$. The shape factor is 1.2. The plastic moment capacity of the section is 120 kN-m. The yield stress of the material is
Option A:	100 Mpa
Option B:	250 Mpa
Option C:	240 Mpa
Option D:	300 Mpa
Q23.	For a given structure subjected to a set of loads W, the value of W found to any assumed mechanism must be either greater or equal to the collapse load W c called as
Option C:	Substitute Frame method
Option D:	Moment area Method
Option B:	Cantilever Method
Option A:	Static theorem
Option B:	Kinematic theorem
Option C:	Uniqueness theorem
Option D:	Bending theorem
Q24.	Which of the method is the Approximate method of Analyzing a Rigid Frame
Option A:	Flexibility Method
Option C:	Substitute Frame method
Option D:	Direct Stiffness Method
	Slope Deflection Method
Q25.	Which of the following method of Analyzing building frame is used for Gravity Load
Option	

