Program: BE **Civil** Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester V

Course Code: CEC501 and Course Name: Structural Analysis II

Time: 1 hour

Max. Marks: 50

Note to the students: - All the Questions are compulsory and carry equal marks.

Q1.	For a given truss: Member = 10, Reaction= 4 and Joints= 6, the truss is
Option A:	Statically determinate
Option B:	Statically indeterminate
Option C:	Stable
Option D:	Unstable
Q2.	In two hinged arches, how many unknown forces exist?
Option A:	One unknown
Option B:	Two unknowns
Option C:	Three unknowns
Option D:	Four unknowns
Q3.	The degree of static indeterminacy of the frame with a single bay double storey
	with both ends fixed is
Option A:	4
Option B:	5
Option C:	6
Option D:	7
Q4.	Internal deformation caused by real loads will be in a linear elastic member, when
	P is normal force, L is length of member, A is cross-sectional area of member, E is
	modulus of elasticity
Option A:	1/4 PL/AE
Option B:	1/3 PL/AE
Option C:	1/2 PL/AE
Option D:	PL/AE
Q5.	A propped cantilever of span L is fixed at end A and simply supported at end B. It
	is subjected to udl of intensity w per unit length. Then the reactions at A and B are
Option A:	RA= (5/8)WL, RB= (3/8)WL
Option B:	RA= WL/2, RB= WL/2
Option C:	RA= (3/8)WL, RB= (5/8)WL
Option D:	RA= WL/4, RB= (3/4)WL

The Compatibility equation form for Matrix method of flexibility is
Where [DI] = Matrix of displacement in the structure due to redundant actually
[DR] = Matrix of displacement in released structure due to load corresponding to
unit action of load
[F] = Flexibility coefficient matrix
[R] = Unknown support reaction matrix
$[D_{l}] = [D_{R}] + [F] [R]$
$[D_1] = [D_R] - [F] [R]$
$[D_R] = [D_I] - [F] [R]$
$[D_R] = [D_1] + [F] [R]$
The lack of fit if it is induced, all the members in the redundant frame will be in
Stress
Tension
Compression
zero force state
The principle of superposition states that
Total BMD = Free BMD+ Fixed BMD
Total BMD= Free BMD+ Fixed Shear
Total BMD= Free BMD + Free Shear
Total BMD= Free BMD+ Fixed Deflection
The Flexibility in the structure can be defined as
Displacement or rotation produced by unit force or moment
Rotation produced by non-unit force
Slope produced by non-unit force
Unit displacement produced by non-unit force
The order of matrix is defined in the flexibility is based on
Number of Redundant present in the beam externally and available equilibrium
equation
Number of Redundant present in the beam internally
Number of unknown reactions
Equilibrium equation
What is the relation in flexibility and stiffness matrix
they are square matrix
the diagonal elements are nonzero and having positive values
element ij=element ji
they are inverse of each other
The effect of moment applied at one joint is calculated on the other opposite joint
by multiplying the moment applied by a certain factor called as
Stiffnessfactor
500000

Option C:	Carry over factor
Option D:	Distribution factor
Q13.	How many slope deflection equations are possible if there are 4 supports
Option A:	0
Option B:	6
Option C:	4
Option D:	3
option bi	
Q14.	The ratio of the stiffness of a beam at the near end when the far end is fixed to stiffness of the beam at the near end when the far end is hinged is
Option A:	1.33
Option B:	0.33
Option C:	0.5
Option D:	1
Q15.	Moment required to rotate near end of prismatic beam through unit angle, the far end being fixed, will be
Option A:	EI/L
Option B:	2EI/L
Option C:	3EI/L
Option D:	4EI/L
Q16.	In moment distribution method, the sum of distribution factor at the Fixed end is
Option A:	Infinity
Option B:	1
Option C:	0.5
Option D:	None of the option
Q17.	The carryover factor in a prismatic member whose far end is Hinge is
Option A:	0
Option B:	Half
Option C:	0.75
Option D:	0.25
Q18.	A propped cantilever beam of span L is loaded with u.d.l of intensity w/unit length, all through the span. Bending Moment at the fixed end is
Option A:	WL ² /8
Option B:	WL ² /4
Option C:	WL ² /10
Option D:	WL ² / 12
Q19.	A two-span continuous beam having equal spans each of length L is subjected to a uniformly distributed load w per unit length. End supports are Simply Supported. The beam has constant flexural rigidity. The bending moment at the middle support is

Option A:	WL ² /4
Option B:	WL ² /8
Option C:	WL /0 WL ² /10
Option D:	WL ² / 12
Q20.	The shape factor for a solid Diamond section with equal side as "a" is
Option A:	2
Option B:	1.5
Option C:	2.5
Option D:	3
Q21.	The moment which makes all the fibres at the section to yield is known as
Option A:	Flexural rigidity
Option B:	Moment of resistance
Option C:	Plastic moment capacity
Option D:	Yield moment
Q22.	The plastic modulus of a section is 4.8×10 ⁻⁴ m ³ . The shape factor is 1.2. The plastic
	moment capacity of the section is 120 kN-m. The yield stress of the material is
Option A:	100 Mpa
Option B:	250 Mpa
Option C:	240 Mpa
Option D:	300 Mpa
Q23.	For a given structure subjected to a set of loads W, the value of W found to any
	assumed mechanism must be either greater or equal to the collapse load $W_{\mbox{\scriptsize C}}$
	called as
Option A:	Static theorem
Option B:	Kinematic theorem
Option C:	Uniqueness theorem
Option D:	Bendingtheorem
Q24.	Which of the method is the Approximate method of Analyzing a Rigid Frame
Option A:	Flexibility Method
Option B:	Substitute Frame method
Option C:	Direct Stiffness Method
Option D:	Slope Deflection Method
0.25	
Q25.	Which of the following method of Analyzing building frame is used for Gravity
	Load
Option A:	Portal Method
Option B:	Cantilever Method
Option C:	Substitute Frame method
Option D:	Moment area Method