Program: Mechanical Engineering Curriculum Scheme: Rev2016 Examination: Second Year Semester: III Course Code: MEC303 and Course Name: Strength of Materials

Time: 1-hour

_

Max. Marks: 50

For the students: - All the Questions are compulsory and carry equal marks .

Q1.	A hollow C.I. cylinder 4m long, 300 mm outer diameter and thickness of metal
	50mm is subjected to a central load on the top when standing straight. The stress
	produced is 75,000 kN/m ² . Assume Young's modulus for C.I. as
	$1.5*10^8$ kN/m ² and find
	(i) magnitude of the load,
	(ii) longitudinal strain produced, and
	(iii) total decrease in length.
Option A:	2.945MN, 5*10 ⁻⁴ , 2mm
Option B:	2.945kN, 5*10 ⁻⁵ , 1.5mm
Option C:	2.945kN, 4*10 ⁻⁴ , 2mm
Option D:	2.945MN, 6*10 ⁻⁴ , 1mm
Q2.	Relation between E and G is
Option A:	$E=2G(1-\mu)$
Option B:	$E=2G(1+\mu)$
Option C:	$E=3G(1+\mu)$
Option D:	$E=3G(1+2\mu)$
Q3.	Formula for elongation of a bar due to its self-weight
Option A:	dl=wl/E
Option B:	dl=wl/2E
Option C:	dl=wl ² /E
Option D:	dl=wl ² /2E
Q4.	Formula for temperature stress for free expansion is
Option A:	dl=l*t
Option B:	$dl=l^{*}\alpha^{*}t$
Option C:	$dl=\alpha^*t$
Option D:	$dl=l^{*}\alpha^{2*}t$
•	
Q5.	Which of these unit of temperature is incorrect
Option A:	٥C
Option B:	٥F
Option C:	٥K
Option D:	٥R
Q6.	Value of coefficient of thermal expansion for steel is less than that of copper.
	When both bars are equally heated,
1	

Option A:	steel will expand more
Option B:	copper will expand more
Option C:	both metals will expand equally
Option D:	both metals will start contracting
•	
Q7.	Unit of volumetric strain is
Option A:	N/mm ²
Option B:	pascal
Option C:	mm ³ /mm ³
Option D:	watt
I	
08.	Unit of strain is
Option A:	N/mm ²
Option B:	kN/mm ²
Option C:	no unit
Option D:	N/m^2
opuon 21	
09.	Poisson's Ratio is the ratio of
Option A:	Lateral strain/Linear strain
Option B:	Linear strain/Lateral Strain
Option C:	Linear stress/Linear strain
Option D:	Lateral stress/Linear strain
O10.	M/I = E/R indicates
Option A:	strength criteria for beams
Option B:	rigidity criteria for beams
Option C:	strength criteria for columns
Option D:	rigidity criteria for columns
1	
Q11.	For circumferential stress, pressure is resisted
Option A:	along the length
Option B:	by the circumference
Option C:	both the length and circumference
Option D:	none of the two
Q12.	Bursting force for calculating longitudinal stress is
Option A:	pressure * cross-sectional area
Option B:	stress * cross-sectional area
Option C:	pressure * circumferential area
Option D:	stress * circumferential area
I	
Q13.	Maximum shear stress for thin spherical shell is
Option A:	0
Option B:	1
Option C:	0.5
Option D:	-1
Q14.	A thin cylindrical shell, 3m long and 1m in diameter is subjected to an internal

	pressure of 2N/mm2. If the thickness of the shell is 10mm, find the
	circumferential and longitudinal stresses respectively. Take E = 200GPa.
Option A:	50,100
Option B:	100, 50
Option C:	150,50
Option D:	100,200
015	
Q15.	Material of the shaft is uniform indicates
Option A:	only E for material is constant in all directions
Option B:	only E and K for material are constant in all directions
Option C:	only E, K and G for material are constant in all directions
Option D:	only E, K, G and μ for material are constant in all directions
011	
Q16.	The ratio of Maximum strain energy to volume represents
Option A:	resilience
Option B:	modulus of resilience
Option C:	proof resilience
Option D:	none of the above
017	Define of stress day to so dilarda and is direction day deaths and is direction
Q17.	Ratio of stress due to suddenly applied load and gradually applied load is
Option A:	
Option B:	0.5
Option C:	1
Option D:	1.5
018	Δ shaft is required to transmit 1MW at 240rpm. If the shear stress is not to exceed
Q10.	55 N/mm ² and twist in the shaft should not be more than 1 degree in a length of
	15 times the diameter determine the required diameter of the shaft. Take $G =$
	75GPa. Take Tmax is 30% more than Tmean.
Option A:	167mm
Option B:	177mm
Option C:	180mm
Option D:	150
	ISUmm
1	150mm
Q19.	Strain Energy is
Q19. Option A:	Strain Energy is always positive
Q19. Option A: Option B:	Strain Energy is always positive always negative
Q19. Option A: Option B: Option C:	Strain Energy is always positive always negative either positive or negative based on tensile or compressive load
Q19. Option A: Option B: Option C: Option D:	Strain Energy is always positive always negative either positive or negative based on tensile or compressive load zero
Q19. Option A: Option B: Option C: Option D:	150mm Strain Energy is always positive always negative either positive or negative based on tensile or compressive load zero
Q19. Option A: Option B: Option C: Option D: Q20.	150mm Strain Energy is always positive always negative either positive or negative based on tensile or compressive load zero Hooke's Law is applicable to
Q19. Option A: Option B: Option C: Option D: Q20. Option A:	150mm Strain Energy is always positive always negative either positive or negative based on tensile or compressive load zero Hooke's Law is applicable to plastic zone of the material
Q19. Option A: Option B: Option C: Option D: Q20. Option A: Option B:	150mm Strain Energy is always positive always negative either positive or negative based on tensile or compressive load zero Hooke's Law is applicable to plastic zone of the material elastic zone of the material
Q19. Option A: Option B: Option C: Option D: Q20. Option A: Option B: Option C:	150mm Strain Energy is always positive always negative either positive or negative based on tensile or compressive load zero Hooke's Law is applicable to plastic zone of the material elastic zone of the material brittle point of the material
Q19. Option A: Option B: Option C: Option D: Q20. Option A: Option B: Option C: Option D:	150mm Strain Energy is always positive always negative either positive or negative based on tensile or compressive load zero Hooke's Law is applicable to plastic zone of the material elastic zone of the material brittle point of the material none are correct
Q19. Option A: Option B: Option C: Option D: Q20. Option A: Option B: Option C: Option D:	ISOmm Strain Energy is always positive always negative either positive or negative based on tensile or compressive load zero Hooke's Law is applicable to plastic zone of the material elastic zone of the material brittle point of the material none are correct
Q19. Option A: Option B: Option C: Option D: Q20. Option A: Option B: Option C: Option D: Q21.	150mm Strain Energy is always positive always negative either positive or negative based on tensile or compressive load zero Hooke's Law is applicable to plastic zone of the material elastic zone of the material brittle point of the material none are correct Maximum value of Poisson's Ratio is

Option B:	0.33
Option C:	0
Option D:	1
Q22.	Limitation of Euler's Theory is, it can be applied to
Option A:	only long columns
Option B:	only short columns
Option C:	long and short columns only and not to medium columns
Option D:	only long beams
Q23.	Moment of Inertia (I) for circular cross-section is given by
Option A:	$(\pi/32)^*d^2$
Option B:	$(\pi/4)^*r^2$
Option C:	$(\pi/32)^*d^4$
Option D:	$(\pi/4)^*r^4$
Q24.	Relation between effective length (L _e) and actual length (L) for one end free and
	one end fixed is
Option A:	$L_e = L$
Option B:	$L_e = 2L$
Option C:	$L_e = L/2$
Option D:	$L_e = L/\sqrt{2}$
•	
Q25.	Point of zero shear is the point at which
Option A:	Load intensity is highest
Option B:	Bending moment value is zero
Option C:	Bending moment value is maximum
Option D:	Load intensity is lowest