University of Mumbai
 Examination 2020 - Sample Question Paper

Program: BE Mechanical Engineering
Curriculum Scheme: Revised 2016/2012
Examination: Third Year Semester - IV
Course Code: MEC402
Course Name: Fluid Mechanics
Time: 1-hour
Max. Marks: 50

Note to the students: - All the Questions are compulsory and carry equal marks.

Q. No.	Question
	Two fluids 1 and 2 have mass densities of p1 and p2 respectively. If p1 > p2, which one of the following expressions will represent the relation between their specific volumes v1 and v2?
Option A:	a) v1 > v2
Option B:	b) v1 < v2
Option C:	c) v1 $=$ v2
Option D:	d) Cannot be determined due to insufficient information.
2	If 200 m 3 of fluid has a weight of 1060N measured on the planet having acceleration due to gravity $6.625 \mathrm{~m} / \mathrm{s} 2$, what will be it's specific volume?
Option A:	a) 0.8
Option B:	b) 0.7
Option C:	c) 0.9
Option D:	d) 0.5
3	The shear stress at a point in a liquid is found to be 0.03 N/m2. The velocity gradient at the point is 0.15 s-1. What will be it's viscosity (in Poise)?
Option A:	a) 20
Option B:	b) 2
Option C:	c) 0.2
Option D:	d) 0.5
4	If the pressure at a point is 1 m of water, what will be it's value in terms of m of oil? (Take, the specific gravity of oil to be 0.8)
Option A:	a) 0.8
Option B:	b) 1
Option C:	c) 1.25
Option D:	d) 2.5

University of Mumbai

Examination 2020 - Sample Question Paper

5	A circular plate 5.0 m diameter is immersed in such a way that its greatest and least depth below the free surface are 3 m and 1 m respectively. determine the position of the centre of pressure.
Option A:	a) 2.5 m
Option B:	b) 5 m
Option C:	c) 4.5 m
Option D:	d) 6 m
6	In case of spherical bodies with uniform mass distribution, what is the position of center of pressure relative to centre of gravity.
Option A:	a) Above
Option B:	b) Below
Option C:	c) Coincides
Option D:	d) None of the mentioned
7	Three flows named as 1,2 and 3 are observed. The Reynold's number for the three are 100, 1000 and 10000. Which of the flows will be laminar? Assume flow is through pipe.
Option A:	a) only 1
Option B:	b) only 1 and 2
Option C:	c) 1,2 and 3
Option D:	d) only 3
8	In a two dimensional flow, the component of the velocity along the X-axis and the Y -axis are $\mathrm{u}=\mathrm{ax}+\mathrm{by}$ and $\mathrm{v}=\mathrm{ax}-\mathrm{by}$. For what condition will the flow field be continuous?
Option A:	a) impossible
Option B:	b) possible if $a=b$
Option C:	c) possible if $a=2 b$
Option D:	d) possible for all values of a and b
9	If a liquid enters a pipe of diameter d with a velocity v , what will it's velocity at the exit if the diameter reduces to $0.5 d$?
Option A:	a) v
Option B:	b) 0.5 v
Option C:	c) $2 v$
Option D:	d) 4 v
10	The Bernoulli's equation in fluid dynamics is valid for
Option A:	a) Compressible flows
Option B:	b) Transient flows
Option C:	c) Continuous flows
Option D:	d) Viscous flows

University of Mumbai

Examination 2020 - Sample Question Paper

Option A:	a) Quadratic
Option B:	b) Constant
Option C:	c) Linear
Option D:	d) Zero
12	Which is the cheapest device for measuring flow / discharge rate.
Option A:	a) Venturimeter
Option B:	b) Pitot tube
Option C:	c) Orificemeter is
Option D:	d) Nozzle meter
13	Which among the following does not depend on the friction factor?
Option A:	a) Pipe diameter
Option B:	b) Fluid density
Option C:	c) Viscosity
Option D:	d) Weight
14	What are the reasons for minor head loses in a pipe?
Option A:	a) Friction
Option B:	b) density
Option C:	c) Valves and bends
Option D:	d) length of pipe
15	What is the total loss developed in a series of pipes?
Option A:	a) Sum of losses in each pipe only
Option B:	b) Sum of local losses only
Option C:	c) Sum of local losses plus the losses in each pipe
Option D:	d) Zero
16	Navier- Stokes equation describes the motion of
Option A:	a) Solid substance
Option B:	b) Non-viscous fluid
Option C:	c) Viscous fluid
Option D:	d) Gas
Option C:	b) Pressure and temperature
Option D:	d) Mass
	Drag force is affected by
	a) Cross sectional area and smoothness

University of Mumbai

Examination 2020 - Sample Question Paper

18	The lift force acts in ___ to the flow velocity.
Option A:	a) Perpendicular direction
Option B:	b) Same direction
Option C:	c) Opposite direction
Option D:	d) Different directions
19	The flow separation occurs when the fluid travels away from the
Option A:	a) Surface
Option B:	b) Fluid body
Option C:	c) Adverse pressure gradient
Option D:	d) Inter-molecular spaces
20	Eddy viscosity is a turbulent transfer of
Option A:	a) Fluid
Option B:	b) Heat
Option C:	c) Momentum
Option D:	d) Pressure
21	The laminar boundary layer is a
Option A:	a) Smooth flow
Option B:	b) Rough flow
Option C:	c) Uniform flow
Option D:	d) Random flow
22	For an isentropic flow
Option A:	a) Enthalpy = 0
Option B:	b) Entropy $=0$
Option C:	c) Pressure $=0$
Option D:	d) Temperature $=0$
23	A shock wave carries
Option A:	a) Heat
Option B:	b) Pressure
Option C:	c) Energy
Option D:	d) Temperature
24	Shock waves that deviate from the arbitrary angle are called
Option A:	a) Oblique shock
Option B:	b) Bow shock
Option C:	c) Normal shock

University of Mumbai
Examination 2020 - Sample Question Paper

Option D:	d) Detonation
25	Stagnation point is the point in fluid mechanics where the velocity of the fluid at that point is Option A:
a) zero	
Option B:	b) infinite
Option C:	c) constant
Option D:	d) unity

