Program: Civil Engineering
Curriculum Scheme: Rev2012
Examination: Third Year Semester VI
Course Code: CEC606 and Course Name: Theory of Reinforced and Prestressed Concrete Time: 1-hour

Max. Marks: 50
For the students: - All the Questions are compulsory and carry equal marks.

Q1.	Which of the following relation is correct in working stress method?				
Option A:	Permissible Stress = Yield Stress x Factor of Safety				
Option B:	Permissible Stress = Yield Stress / Factor of Safety				
Option C:	Yield Stress = Permissible Stress / Factor of Safety				
Option D:	Permissible Stress = Yield Stress - Factor of Safety				
	Q2.				
If the depth of actual neutral axis is more than the critical neutral axis, then the					
section is		$	$	Option A:	Balanced
:---:	:---				
Option B:	Under-reinforced				
Option C:	Over-reinforced				
Option D:	Transformed				
Q3.	Modular ratio m is given by				
Option A:	$280 / 3 \sigma_{c b c}$				
Option B:	$280 / 4 \sigma_{c b c}$				
Option C:	$280 / 5 \sigma_{c b c}$				
Option D:	$280 / 6 \sigma_{c b c}$				
Q4.	If the depth of actual neutral axis is more than the critical neutral axis, then the section is Option A:				
Balanced					
Option B:	Under-reinforced				
Option C:	Over-reinforced				
Transformed					
Q5.	As per IS 456-2000 in working stress method, the permissible compressive stress in bars, in beams or slabs when compressive resistance of concrete is taken in account, can be taken as or permissible stress in steel in compression, whichever is lesser.				
Q6.	Q in WSM is called as				
Option A:	lever arm constant				
Option B:	Neutral axis constant				
Option C:	Moment of resistance constant				
Option D:	Loading constant				
Option A:	1.5				
Option B:	2				
Option C:	1.15				
	1.37				

Q7.	Shear reinforcement in beams are provided in the form of
Option A:	Vertical stirrups
Option B:	Horizontal stirrups
Option C:	Structural steel
Option D:	Rebar
Q8.	As per IS 456-2000 in which condition minimum shear reinforcement is to be provided?
Option A:	When actual shear is greater than shear capacity of concrete
Option B:	When actual shear is lesser than shear capacity of concrete
Option C:	Every time
Option D:	No requirement
Q9.	The minimum number of bars to be provided in square or rectangular column are
Option A:	2
Option B:	4
Option C:	6
Option D:	8
Q10.	In an under-reinforced concrete section
Option A:	Steel will reach its permissible stress first
Option B:	Concrete will reach its permissible stress first
Option C:	Both Steel and Concrete will reach their permissible stress
Option D:	None of these
Q11.	For Fe 415 the permissible stress in WSM as per IS 456-2000 is
Option A:	$250 \mathrm{~N} / \mathrm{mm}^{2}$
Option B:	$150 \mathrm{~N} / \mathrm{mm}^{2}$
Option C:	$50 \mathrm{~N} / \mathrm{mm}^{2}$
Option D:	$230 \mathrm{~N} / \mathrm{mm}^{2}$
Q12.	k in WSM is called as
Option A:	lever arm constant
Option B:	neutral axis constant
Option C:	moment of resistance constant
Option D:	loading constant
Q13.	The minimum reinforcement in a slab takes care of
Option A:	Shear force
Option B:	Bending moment
Option C:	Support to main reinforcement
Option D:	Axial force
Q14.	The main reinforcement in RCC cantilever slab is placed at
Option A:	Top face along the span
Option B:	Bottom face along the span
Option D:	Top face along width
	Bottom face along width

Q15.	As per IS 456-2000, the minimum depth at the end of isolated slope footing shall not be less than
Option A:	300 mm
Option B:	200 mm
Option C:	150 mm
Option D:	400 mm
Q16.	Working stress method is also known as
Option A:	Plastic method
Option B:	Rebound method
Option C:	Modular ratio method
Option D:	Permissible stress method
Q17.	Loss due to creep of concrete ranges up to
Option A:	1 to 2 \%
Option B:	2 to 3 \%
Option C:	5 to 10 \%
Option D:	10 to 20 \%
Q18.	Freyssinet System is commonly used for
Option A:	Pre-tensioning
Option B:	Post-tensioning
Option C:	In both pre and post tensioning
Option D:	Column jacketing
Q19.	---------- is made of a bundle of wires spun together.
Option A:	Strand
Option B:	Wire
Option C:	Tendon
Option D:	Concrete
Q20.	What is the minimum grade of concrete for PSC construction?
Option A:	M20
Option B:	M30
Option C:	M40
Option D:	M25
Qption A:	Anchorage loss
Option B:	Shrinkage
Option C:	Creep
Option A:	WSM is
Option B:	Proberministic method
Option C:	Both Deterministic and Probabilistic method
Option D:	None
Q22.	The loss of prestes constant strain in steel is called as
Oth	

Option D:	Relaxation of steel and elastic shortening of concrete
Q23.	The loss of prestress due to friction can be reduced by
Option A:	Using grouting
Option B:	Jacking from the two ends
Option C:	Using concordant profile
Option D:	None
Q24.	The permissible stress in concrete for flexure in WSM for M20 concrete is
Option A:	$7 \mathrm{~N} / \mathrm{mm}^{2}$
Option B:	$8 \mathrm{~N} / \mathrm{mm}^{2}$
Option C:	$9 \mathrm{~N} / \mathrm{mm}^{2}$
Option D:	$10 \mathrm{~N} / \mathrm{mm}^{2}$
Q25.	The permissible stress in concrete for direct compression in WSM for M20 concrete is
Option A:	$5 \mathrm{~N} / \mathrm{mm}^{2}$
Option B:	$6 \mathrm{~N} / \mathrm{mm}^{2}$
Option C:	$7 \mathrm{~N} / \mathrm{mm}^{2}$
Option D:	$8 \mathrm{~N} / \mathrm{mm}^{2}$

Program: Civil Engineering
Curriculum Scheme: Rev2012
Examination: Third Year Semester VI
Course Code: CEC606 and Course Name: Theory of Reinforced and Prestressed Concrete Time: 1 hour

Max. Marks: 50

Question Number	Correct Option (Enter either ' A ' or ' B ' or ' C ' or ' D ')
Q1.	B
Q2.	C
Q3.	A
Q4	C
Q5	A
Q6	C
Q7	A
Q8.	A
Q9.	B
Q10.	A
Q11.	D
Q12.	B
Q13.	C
Q14.	A
Q15.	C
Q16.	C
Q17.	C
Q18.	A
Q19.	A
Q20.	B
Q21.	A
Q22.	D
Q23.	B
Q24.	A
Q25.	A

