University of Mumbai

Examination 2020 under cluster \qquad (Lead College Short name)
Program: Civil Engineering
Curriculum Scheme: Rev2016
Examination: Second Year Semester IV Course Code: CEC 406 and Course Name: Fluid Mechanics II

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	The flow separation occurs when the fluid travels away from the
Option A:	Surface
Option B:	Fluid body
Option C:	Adverse pressure gradient
Option D:	Inter-molecular spaces
Q2.	With the boundary layer separation, displacement thickness
Option A:	Increases
Option B:	Decreases
Option C:	Remains Same
Option D:	Independent
Q3.	In wind tunnel the speed of the wind is $60 \mathrm{~km} / \mathrm{hr}$ on a flat plate of size 2.5 m long and 1.5 m wide. The density of air is $1.17 \mathrm{~kg} / \mathrm{m}^{3}$. The coefficient of lift and drag is 0.8 and 0.14 find the Lift force.
Option A:	487.69 N
Option B:	500.20 N
Option C:	502.78 N
Option D:	480.25 N
Q4.	For a streamlined body to achieve low drag coefficient, the boundary layer must
Option A:	Flow over the body
Option B:	Be attached to the body
Option C:	Move away from the body
Option D:	Move parallel to the body
Q5.	Mach number is
Option A:	$\mathrm{M}=\mathrm{V} / \mathrm{C}$
Option B:	$\mathrm{M}=\mathrm{V} / \sqrt{K / h r o}$
Option C:	$\sqrt{\text { Inertia force } / \text { Elastic Force }}$
Option D:	all
Q6.	The region outside the Mech cone is called

Option A:	zone of action
Option B:	zone of silence
Option C:	control volume
Option D:	none of the above
Q7.	Converging-diverging nozzle is also known as
Option A:	Pascal nozzle
Option B:	Bernoulli's nozzle
Option C:	Torricelli's nozzle
Option D:	de Laval' nozzle
Q8.	what is the condition for maximum power transmitted through nozzle
Option A:	H $=3 h_{f}$
Option B:	H = 2h
Option C:	H = h
Option D:	H $=1 / 3 h_{\mathrm{f}}$
	Find the maximum power transmitted by a jet of water discharging freely out of
Q9.	Find
nozzle fitted to pipe carries water at 0.0212 m ${ }^{3} /$. The available Head at the	
nozzle is 90 m.	

Option D:	39.10m
Q14.	TEL is
Option A:	pressure head
Option B:	summation of Pressure head and datum head
Option C:	summation of pressure head, datum head, and kinetic head
Option D:	none of these
Q15.	There will be a transition from laminar flow to turbulent flow when
Option A:	Reynolds number increases
Option B:	Reynolds number decreases
Option C:	Reynolds number is the same
Option D:	Froude's number increases
Q16.	The K.E correction factor α for a circular pipe is equal to
Option A:	2
Option B:	3
Option C:	4
Option D:	6
Q17.	The maximum velocity in a circular pipe when flow is laminar occurs at
Option A:	the top of the pipe
Option B:	the bottom of the pipe
Option C:	the centre of the pipe
Option D:	not necessarily at the centre
Q18.	In a hydroelectric power plant, where is the penstock used?
Option A:	Between dam and the turbine
Option B:	Between turbine and discharge drain
Option C:	Turbine and heat exchanger
Option D:	Heat exchanger and fluid pump
Q19.	Due to which of the following phenomena water hammer is caused
Option A:	Incompressibility of fluid
Option B:	Sudden opening of a valve in a pipeline
Option C:	The material of the pipe being elastic
Option D:	Sudden closure (partial or complete) of a valve in pipe flow
Q20.	What are the assumptions made for a fluid flow through a pipe?
Option A:	Fluid inertia is not taken
Option B:	Viscosity is not taken
Option C:	Volume is not considered
Option D:	Mass is not considered
Q21.	What is the function of a surge tank?
Option A:	It causes water hammer
Option B:	Produces surge in the pipeline
Option C:	Relieves water hammer

Option D:	Supplies water at constant pressure
Q22.	With the increase in flow velocity, Reynolds number_
Option A:	Increases
Option B:	Decreases
Option C:	Same
Option D:	Independent
Q23.	Example of turbulent flow?
Option A:	Smoking rises from cigarette
Option B:	Flow on a symmetric airfoil
Option C:	Laminar flow
Option D:	Turbulent flow on the airfoil
Q24.	Which among the following is a device that converts a laminar flow into a turbulent flow?
Option A:	Dead Weight Gauge
Option B:	Vacuum Gauge
Option C:	Turbulator
Option D:	Ionization Gauge
Q25.	Eddy viscosity is a turbulent transfer of
Option A:	Fluid
Option B:	Heat
Option C:	Momentum
Option D:	Pressure

University of Mumbai

Examination 2020 under cluster \qquad (Lead College Short name)
Program: Civil Engineering
Curriculum Scheme: Rev2016
Examination: Second Year Semester IV Course Code: CEC 406 and Course Name: Fluid Mechanics II
Time: 1 hour
Max. Marks: 50

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	C
Q2.	A
Q3.	A
Q4	B
Q5	D
Q6	B
Q7	D
Q8.	A
Q9.	A
Q10.	C
Q11.	A
Q12.	B
Q13.	C

Q14.	C
Q15.	A
Q16.	A
Q17.	C
Q18.	A
Q19.	D
Q20.	A
Q21.	C
Q22.	A
Q23.	A
Q24.	C
Q25.	C

