University of Mumbai
 Examination 2020 under cluster 2+5

Curriculum Scheme: Revised 2016/2012
Examination: Third Year Semester V

Course Code and Course Name: MEC502 Mechanical Measurement and Control
Time: 1hour
Max. Marks: 50

College Name: A.P. Shah Institute of Technology


```
=============================================================================
```

Note to the students:- All Questions are compulsory and carry equal marks .

Q1.	The transient response, with feedback system
Option A:	rises slowly
Option B:	rises quickly
Option C:	decays slowly
Option D:	decays quickly
	The unit-impulse response of a system is given byc $(t)=0.5 e^{-t / 2}$. Its transfer function is
Q2.	$\frac{1}{(s+2)}$
Option A:	
Option B:	$\frac{1}{(1+2 s)}$
Option C:	$\frac{2}{(s+2)}$
Option D:	$\frac{2}{(1+2 s)}$
Q3.	If the unit-step response of a system is a unit impulse function, then the transfer function of such a system will be
Option A:	$\frac{1}{2}$
Option B:	$\frac{1}{s}$
Option C:	s
Option D:	$\frac{1}{s^{2}}$
	Q4.
Option A:	Type of a system depends on the

University of Mumbai

Examination 2020 under cluster 2+5

Option B:	Difference between the no. of poles and zeros
Option C:	No. of its real poles
Option D:	No. of poles it has at the origin
Q5.	A unity feedback system has open loop transfer function as $G(s)=\frac{16}{s(s+16)}$ Identify the type of system
Option A:	Overdamped
Option B:	Underdamped
Option C:	Critically damped
Option D:	Undamped
Q6.	The settling time of a feedback system with the closed-loop transfer function $\frac{C(s)}{R(s)}=\frac{\omega^{2}}{s^{2}+2 \xi \omega s+\omega^{2}}$
Option A:	$t_{s}=\frac{2}{\xi \omega}$
Option B:	$t_{s}=\frac{\xi \omega}{2}$
Option C:	$t_{s}=\frac{4}{\xi \omega}$
Option D:	$t_{s}=4 \xi \omega$
Q7.	The velocity-error constant K_{v} of a feedback system of a closed-loop transfer function $\frac{C(s)}{R(s)}=\frac{G(s)}{1+G(s) H(s)}$
Option A:	$K_{v}=\lim _{s \rightarrow 0} s G(s) H(s)$
Option B:	$K_{v}=\lim _{s \rightarrow 0} s \frac{G(s)}{1+G(s) H(s)}$
Option C:	$K_{v}=\lim _{s \rightarrow 0} s G(s)$
Option D:	$K_{v}=\lim _{s \rightarrow 0} s[1+G(s) H(s)]$
Q8.	A system has the following transfer function $G(s)=\frac{100(s+5)(s+50)}{s^{4}(s+10)\left(s^{2}+3 s+10\right)}$ The type and order of the system are respectively
Option A:	4 and 9
Option B:	7 and 4
Option C:	4 and 7
Option D:	9 and 4

University of Mumbai

Examination 2020 under cluster 2+5

Q9.	The step response of a system is $c(t)=1-5 e^{-t}+10 e^{-2 t}-6 e^{-3 t}$. The impulse response of the system is
Option A:	$5 e^{-t}-20 e^{-2 t}+18 e^{-3 t}$
Option B:	$5 e^{t}-20 e^{2 t}+18 e^{-3 t}$
Option C:	$5 e^{-t}+20 e^{-2 t}+18 e^{-3 t}$
Option D:	$5 e^{-t}+20 e^{-2 t}-18 e^{-3 t}$
Q10.	Given a unity feedback with $G(s)=\frac{K}{s(s+4)}$ The value of K for the damping ratio of 0.5 is
Option A:	1
Option B:	9
Option C:	4
Option D:	16
Q11.	In type I system, a constant output velocity at steady state will be possible, when
Option A:	There is no error
Option B:	There is a constant steady-state error
Option C:	There is a variable steady-state error
Option D:	There is a fluctuating error
Q12.	The impulse response of a system is $c(t)=5 e^{-10 t}$; its step response is equal to
Option A:	$0.5 e^{-10 t}$
Option B:	$5\left(1-e^{-10 t}\right)$
Option C:	$0.5\left(1-e^{-10 t}\right)$
Option D:	$10\left(1-e^{-10 t}\right)$
Q13.	The open loop transfer function of a system is $10 /(1+\mathrm{s})$, the steady- state error to a unit-step input will be
Option A:	Zero
Option B:	1/11
Option C:	10
Option D:	Infinity
Q14.	The damping ratio and natural frequency of a second-order system are 0.6 and 2 $\mathrm{rad} / \mathrm{s}$ respectively. Which of the following combinations gives the correct values of peak and settling time, respectively, for the unit-step response of the system?
Option A:	3.33 s and 1.95 s
Option B:	1.95 s and 1.5 s
Option C:	1.95 s and 3.33 s
Option D:	1.5 s and 1.95 s
Q15.	The steady-state error, due to a ramp input for a type-2 system, is equal to

University of Mumbai

Examination 2020 under cluster 2+5

Option A:	Zero
Option B:	Infinite
Option C:	Non-zero number
Option D:	Constant
Q16.	If a second-order system has poles at $\mathbf{- 1} \pm \mathbf{j}$, then the step response of the system will exhibit a peak value at
Option A:	4.5 s
Option B:	3.5 s
Option C:	3.14 s
Option D:	1 s
Q17.	Differentiation of parabolic response is a ------------- response?
Option A:	Parabolic
Option B:	Ramp
Option C:	Step
Option D:	Impulse
Q18.	The output in response to a unit step input for a particular continuous control system is $\boldsymbol{c}(\boldsymbol{t})=\mathbf{1}-\boldsymbol{e}^{-2 t}$. What is the delay time Td?
Option A:	0.346
Option B:	0.693
Option C:	O.173
Option D:	1.386
Q19.	Time taken by the response to reach and stay within a specified error is called
Option A:	Raise time
Option B:	Peak time
Option C:	Delay time
Option D:	Settling time
Q22.	Consider a system with transfer function. Its damping ratio will be 0.5 when
Q20.	Laplace transform of unit impulse signal is:
Option A:	A/s
Option B:	A
Option C:	1
Option D:	$1 /$ s
Q21.	The damping ratio and peak overshoot are measures of:
Option A:	Relative stability
Option B:	Absolute stability
Option C:	Steady state error
Option D:	Speed of response

University of Mumbai

Examination 2020 under cluster 2+5

	the values of k is: $G(s)=\frac{(s+6)}{k s^{2}+s+6}$
Option A:	2/6
Option B:	3
Option C:	1/6
Option D:	6
Q23.	A control system, having a unit damping factor, will give
Option A:	A critically damped response
Option B:	An oscillatory response
Option C:	An undamped response
Option D:	No response
Q24.	A second-order system exhibits 100\% overshoot. Its damping coefficient is:
Option A:	Equal to 1
Option B:	Equal to 0
Option C:	Less than 1
Option D:	Greater than 1
Q25.	For a second-order system $2 \frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+8 y=8 x$ The damping ratio is
Option A:	0.1
Option B:	0.25
Option C:	0.333
Option D:	0.5

