University of Mumbai

Examination 2020 under cluster

\qquad (Lead College Short name)
Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination: Second Year
Course Code: CSC303 and
Course Name: Discrete Mathematics
Time: 1 hour
Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	The relation R is said to be an equivalence relation if it is
Option A:	Reflexive, asymmetric and transitive
Option B:	Reflexive, asymmetric
Option C:	Reflexive, antisymmetric and transitive
Option D:	Reflexive, symmetric and transitive
Q2.	If $\mathrm{A}=\{1,2,3\}$ and $\mathrm{R}=\{(1,1),(2,2)\}$ then R is,
Option A:	Reflexive and transitive
Option B:	Reflexive and symmetric
Option C:	Antisymmetric and transitive
Option D:	Symmetric but not transitive
Q3.	Let $\mathrm{f}(\mathrm{x})=\mathrm{x}+3, \mathrm{~g}(\mathrm{x})=\mathrm{x}-4$ and $\mathrm{h}(\mathrm{x})=2 \mathrm{x}$ find gofoh(x$)$ and $\operatorname{hogof}(\mathrm{x})$.
Option A:	$\operatorname{gofoh}(\mathrm{x})=2 \mathrm{x}-1$ and $\operatorname{hogof}(\mathrm{x})=2 \mathrm{x}-2$
Option B:	$\operatorname{gofoh}(\mathrm{x})=2 \mathrm{x}-3$ and $\operatorname{hogof}(\mathrm{x})=2 \mathrm{x}-1$
Option C:	$\operatorname{gofoh}(\mathrm{x})=2 \mathrm{x}+6$ and $\operatorname{hogof}(\mathrm{x})=2 \mathrm{x}-4$
Option D:	$\operatorname{gofoh}(\mathrm{x})=2 \mathrm{x}+3$ and $\operatorname{hogof}(\mathrm{x})=2 \mathrm{x}+6$
Q4.	Which of the following is most appropriate formula to represent statement? "Gold and silver ornaments are precious." The following notations are used. $G(x)$: x is gold ornament $\mathrm{S}(\mathrm{x})$: x is silver ornament $\mathrm{P}(\mathrm{x})$: x is precious
Option A:	$\forall x(P(x) \rightarrow(G(x) \wedge S(x))$)
Option B:	$\forall x(G(x) \wedge(S(x)) \rightarrow P(x)$
Option C:	$\exists x((G)(x) \wedge(S(x)) \rightarrow P(x))$
Option D:	$\forall x((G)(x) \vee(S(x)) \rightarrow P(x)$
Q5.	The complement of 2 in the given lattice is
Option A:	30
Option B:	5
Option C:	15

University of Mumbai
Examination 2020 under cluster \qquad (Lead College Short name)

Option D:	10
Q6.	Consider the Hasse diagram shown below, which of these diagrams represents lattice
Option A:	i \& iv only
Option B:	ii \& iii only
Option C:	iii only
Option D:	i, iii \& iv only
Q7.	What is the correct translation of the following statement into the mathematical logic "some real numbers are rational"
Option A:	$\exists \mathrm{x}($ real $(\mathrm{x}) \vee$ rational (x))
Option B:	$\forall x($ real $(\mathrm{x}) \rightarrow$ rational (x))
Option C:	$\exists x(\operatorname{real}(\mathrm{x}) \wedge$ rational (x))
Option D:	$\exists \mathrm{x}($ rational $(\mathrm{x}) \rightarrow$ real (x))
Q8.	Find the sequence of the following generating function as, $(1+X)^{3}$
Option A:	\{1,3,3,1,0,0,0\}
Option B:	\{3,3,3,3,0,0,0\}
Option C:	\{1,1,1,1,0,0,0\}
Option D:	\{3,1,3,1,3,1,3\}
Q9.	With reference to below graphs which statement is true. Graph G1 Graph 62
Option A:	Both graphs are isomorphic
Option B:	Graphs are not isomorphic
Option C:	Cannot determine
Option D:	Graph G1 is subgraph of Graph G2.
Q10.	With reference to below graph which statement is true

University of Mumbai

Examination 2020 under cluster (Lead College Short name)

	Graph G1 Graph G2
Option A:	Both graphs are isomorphic
Option B:	Graphs are not isomorphic
Option C:	Cannot determine
Option D:	Graph G1 is subgraph of G2
Q11.	with references to following graph which statement is true
Option A:	Graph is Eulerian graph.
Option B:	Graph is not a Eulerian graph.
Option C:	Not connected graph.
Option D:	Bipartite graph
Q12.	which of the following statements is/are TRUE for undirected graphs? P: Number of odd degree vertices is even Q: Sum of degrees of all vertices is even
Option A:	P only
Option B:	Q only
Option C:	Both P and Q
Option D:	Neither P nor Q
Q13.	If 7 colours are used to paint 50 bicycles then at least how many bicycles will be of the same colour.
Option A:	57
Option B:	10
Option C:	9
Option D:	8
Q14.	Consider $\mathrm{A}=\{1,2,3,4,5,6\}$ is a finite Abelian group under multiplication modulo 7. Find the inverse of 5 and 2.
Option A:	3 and 4 respectively
Option B:	4 and 3 respectively
Option C:	3 and 6 respectively
Option D:	2 and 5 respectively

University of Mumbai

Examination 2020 under cluster \qquad (Lead College Short name)

Q15.	Find the hamming distance between X and Y as $\mathbf{X}=\mathbf{1 1 0 1 1 0}$ and $Y=\mathbf{0 0 0 1 0 1}$
Option A:	4
Option B:	3
Option C:	5
Option D:	6
Q16.	Let A and B be two sets and let A^{C} and B^{c} denote the complements of the set A and B. The set (A-B) $U(B-A) U(A \cap B)$ is equal to
Option A:	A U B
Option B:	$\mathrm{A}^{\mathrm{c}} \mathrm{U} \mathrm{B}^{\mathrm{c}}$
Option C:	$\mathrm{A} \cap \mathrm{B}$
Option D:	$\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}$
Q17.	Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be the non-empty sets and let $\mathrm{X}=(\mathrm{A}-\mathrm{B})-\mathrm{C} \quad$ and $\mathrm{Y}=(\mathrm{A}-\mathrm{C})-(\mathrm{B}-\mathrm{C})$ Which of the following is TRUE?
Option A:	$\mathrm{X}=\mathrm{Y}$
Option B:	$\mathrm{X} \subset \mathrm{Y}$
Option C:	$\mathrm{Y} \subset \mathrm{X}$
Option D:	X is not equal to Y
Q18.	Which of the following is not necessarily a property of a group?
Option A:	Commutativity
Option B:	Associativity
Option C:	Existence of inverse of every element.
Option D:	Existence of identity.
Q19.	Four fair coins are tossed simultaneously. The probability that at least one head and at least one tail turn up is
Option A:	1/16
Option B:	1/8
Option C:	7/8
Option D:	15/16
Q20.	If $\mathrm{n}(\mathrm{A})=5, \mathrm{n}(\mathrm{B})=8, \quad$ and $\mathrm{n}(\mathrm{A} \cap \mathrm{B})=3$ then $\mathrm{n}(\mathrm{A} \mathrm{U} \mathrm{B})=$?
Option A:	16
Option B:	5
Option C:	8
Option D:	10
Q21.	Find then generating function corresponding to the given sequence as ($1,1,1,1,1 \ldots \ldots .$.
Option A:	1/(1-x)
Option B:	1/(1+x)
Option C:	$\mathrm{x} /(1+\mathrm{x})$
Option D:	$\mathrm{x} /(1-\mathrm{x})$

University of Mumbai

Examination 2020 under cluster \qquad (Lead College Short name)

Q22.	From the given Hasse diagram find the Join and Meet of $\mathrm{A}=\{12,18\}$
Option A:	Join is 36 Meet is 2
Option B:	Join is 36 Meet is 3
Option C:	Join is 36 Meet and no meet exists
Option D:	Join is 18 Meet is 3
Q23.	Consider the set of positive rational numbers $\mathrm{Q}+$ forms an Abelian group under composition defined by $a * b=a b / 2$ Find the identity element of given structure.
Option A:	2
Option B:	3
Option C:	4
Option D:	6
Q24.	The output of the given logical equivalence is $(\neg \mathrm{P} \wedge(\mathrm{P} \vee \mathrm{Q})) \rightarrow \mathrm{Q}$
Option A:	Tautology
Option B:	Contradiction
Option C:	Converse
Option D:	Inverse
Q25.	A box contains 6 white balls and 5 red balls. In how many ways, 4 balls can be drawn from the box if, two balls are to be white and two are red.
Option A:	180
Option B:	330
Option C:	150
Option D:	210

