Program: Mechanical Engineering Curriculum Scheme: Rev2016(CBCGS) Examination: Second Year Semester III Course Code: MEC302 and Course Name: Thermodyamics

Time: 1 hour

Max. Marks: 50

NOTE: There are total 25 questions. All the Questions are compulsory and carry equal marks

Option A:zeroOption B:minimumOption C:maximumOption D:positiveQ2.The compression ratio for petrol engines isOption A:3 to 6Option B:5 to 8Option D:20 to 30Q3.The efficiency of Diesel cycle approaches to Otto cycle efficiency whenOption B:cut-off is increasedOption D:cut-off is decreasedOption D:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constantvolume (c_v) isOption D:greater than oneOption D:ne of theseQ5.If the value of $n = 0$ in the equation $pv^p = C$, then the process is calledOption A:constant volume processOption D:isothermal processOption D:isothermal processOption D:constant pressure processOption D:isothermal processOption D:constant pressure processOption D:isothermal processOption D:isothermal processOption D:isothermal processOption D:isothermal processOption D:isothermal processOption D:isothermal processOption B:2.87 J/kgKOption B:2.87 J/kgK	Q1.	Workdone in a free expansion process is
Option C:maximumOption D:positiveQ2.The compression ratio for petrol engines isOption A:3 to 6Option B:5 to 8Option D:20 to 30Q3.The efficiency of Diesel cycle approaches to Otto cycle efficiency whenOption A:cut-off is increasedOption C:cut-off is decreasedOption D:cut-off is ceroadOption D:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constantvolume (c_v) isOption A:equal to oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption A:constant volume processOption B:adiabatic processOption D:isothermal processOption D:isothermal processOption D:isothermal processOption D:isothermal processOption A:0.287 J/kgKOption B:2.87 J/kgK	Option A:	zero
Option D:positiveQ2.The compression ratio for petrol engines isOption A:3 to 6Option B:5 to 8Option C:15 to 20Option D:20 to 30Q3.The efficiency of Diesel cycle approaches to Otto cycle efficiency whenOption A:cut-off is increasedOption D:cut-off is decreasedOption D:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constantQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption B:adiabatic processOption B:adiabatic processOption D:isothermal processOption C:constant pressure processOption B:adiabatic processOption C:constant pressure processOption B:adiabatic processOption C:constant pressure processOption A:constant (R) in S. I. units isOption A:0.287 J/kgKOption B:2.87 J/kgK	Option B:	minimum
Q2.The compression ratio for petrol engines isOption A:3 to 6Option B:5 to 8Option D:20 to 30Q3.The efficiency of Diesel cycle approaches to Otto cycle efficiency whenOption A:cut-off is increasedOption B:cut-off is decreasedOption D:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_{ρ}) and specific heat at constantVolume (c_{v}) isOption B:less than oneOption D:greater than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption A:constant processOption B:adiabatic processOption C:constant processOption B:adiabatic processOption B:adiabatic processOption B:adiabatic processOption B:adiabatic processOption B:adiabatic processOption C:constant processOption B:adiabatic processOption C:constant processOption D:isothermal processOption D:isothermal processOption B:2.87 J/kgKOption B:2.87 J/kgK	Option C:	maximum
Option A:3 to 6Option B:5 to 8Option C:15 to 20Option D:20 to 30Q3.The efficiency of Diesel cycle approaches to Otto cycle efficiency whenOption A:cut-off is increasedOption B:cut-off is decreasedOption D:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constantVolume (c_v) isOption B:less than oneOption D:greater than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption B:adiabatic processOption B:adiabatic processOption C:constant pressure processOption B:adiabatic processOption C:constant pressure processOption B:adiabatic processOption B:adiabatic processOption C:constant pressure processOption D:isothermal processOption D:isothermal processOption D:isothermal processOption A:0.287 J/kgKOption B:2.87 J/kgK	Option D:	positive
Option A:3 to 6Option B:5 to 8Option C:15 to 20Option D:20 to 30Q3.The efficiency of Diesel cycle approaches to Otto cycle efficiency whenOption A:cut-off is increasedOption B:cut-off is decreasedOption D:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constantVolume (c_v) isOption B:less than oneOption D:greater than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption B:adiabatic processOption B:adiabatic processOption C:constant pressure processOption B:adiabatic processOption C:constant pressure processOption B:adiabatic processOption B:adiabatic processOption C:constant pressure processOption D:isothermal processOption D:isothermal processOption D:isothermal processOption A:0.287 J/kgKOption B:2.87 J/kgK		
Option B:5 to 8Option C:15 to 20Option D:20 to 30Q3.The efficiency of Diesel cycle approaches to Otto cycle efficiency whenOption A:cut-off is increasedOption B:cut-off is decreasedOption C:cut-off is zeroOption D:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constant volume (c_v) isOption A:equal to oneOption D:iss than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption A:constant volume processOption C:constant pressure processOption C:constant pressure processOption A:constant pressure processOption A:constant pressure processOption B:adiabatic processOption D:isothermal processOption D:isothermal processOption D:isothermal processOption D:isothermal processOption D:isothermal processOption A:0.287 J/kgKOption B:2.87 J/kgK		The compression ratio for petrol engines is
Option C:15 to 20Option D:20 to 30Q3.The efficiency of Diesel cycle approaches to Otto cycle efficiency whenOption A:cut-off is increasedOption B:cut-off is decreasedOption C:cut-off is zeroOption D:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constantvolume (c_v) isOption A:equal to oneOption C:greater than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption A:constant volume processOption C:constant pressure processOption C:constant pressure processOption A:constant pressure processOption A:constant pressure processOption B:isothermal processOption C:constant pressure processOption D:isothermal processOption D:isothermal processOption D:isothermal processOption D:isothermal processOption A:0.287 J/kgKOption B:2.87 J/kgK	Option A:	3 to 6
Option D:20 to 30Q3.The efficiency of Diesel cycle approaches to Otto cycle efficiency whenOption A:cut-off is increasedOption B:cut-off is decreasedOption D:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constantvolume (c_v) isOption B:less than oneOption D:greater than oneOption D:is constant oneOption D:is constant oneOption B:less than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption A:constant volume processOption C:constant pressure processOption A:0.287 J/kgKOption B:2.87 J/kgK		5 to 8
Q3.The efficiency of Diesel cycle approaches to Otto cycle efficiency whenOption A:cut-off is increasedOption B:cut-off is decreasedOption C:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constant volume (c_v) isOption A:equal to oneOption D:ises than oneOption D:ises than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption A:constant volume processOption D:isothermal processOption D:isothermal processOption A:constant pressure processOption A:constant pressure processOption B:adiabatic processOption D:isothermal processOption A:0.287 J/kgKOption B:2.87 J/kgK	Option C:	15 to 20
Option A:cut-off is increasedOption B:cut-off is decreasedOption C:cut-off is zeroOption D:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constant volume (c_v) isOption A:equal to oneOption D:is sthan oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption B:adiabatic processOption C:constant volume processOption B:adiabatic processOption D:is othermal processOption B:2.87 J/kgKOption B:2.87 J/kgK	Option D:	20 to 30
Option A:cut-off is increasedOption B:cut-off is decreasedOption C:cut-off is zeroOption D:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constant volume (c_v) isOption A:equal to oneOption D:is sthan oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption B:adiabatic processOption C:constant volume processOption B:adiabatic processOption D:is othermal processOption B:2.87 J/kgKOption B:2.87 J/kgK		
Option B:cut-off is decreasedOption C:cut-off is zeroOption D:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constant volume (c_v) isOption A:equal to oneOption B:less than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption B:adiabatic processOption D:constant pressure processOption D:isothermal processOption A:0.287 J/kgKOption B:2.87 J/kgK	Q3.	The efficiency of Diesel cycle approaches to Otto cycle efficiency when
Option C:cut-off is zeroOption D:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constant volume (c_v) isOption A:equal to oneOption B:less than oneOption C:greater than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption B:adiabatic processOption B:adiabatic processOption C:constant processOption B:isothermal processOption C:constant processOption B:adiabatic processOption A:constant processOption A:constant processOption B:adiabatic processOption D:isothermal processOption D:isothermal processOption B: $2.87 J/kgK$ Option B: $2.87 J/kgK$	Option A:	cut-off is increased
Option D:cut-off is constantQ4.The ratio of specific heat at constant pressure (c_p) and specific heat at constant volume (c_v) isOption A:equal to oneOption B:less than oneOption C:greater than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption B:adiabatic processOption B:adiabatic processOption C:constant volume processOption C:constant pressure processOption C:constant pressure processOption C:constant pressure processOption A:constant pressure processOption A:0.287 J/kgKOption B:2.87 J/kgK	Option B:	cut-off is decreased
Q4.The ratio of specific heat at constant pressure (c_p) and specific heat at constant volume (c_v) isOption A:equal to oneOption B:less than oneOption C:greater than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption A:constant volume processOption B:adiabatic processOption C:constant pressure processOption D:isothermal processOption D:isothermal processOption A:0.287 J/kgKOption B:2.87 J/kgK	Option C:	cut-off is zero
volume (c_v) isOption A:equal to oneOption B:less than oneOption C:greater than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption A:constant volume processOption B:adiabatic processOption C:constant pressure processOption D:isothermal processOption D:isothermal processQ6.The value of gas constant (R) in S. I. units isOption A:0.287 J/kgKOption B:2.87 J/kgK	Option D:	cut-off is constant
volume (c_v) isOption A:equal to oneOption B:less than oneOption C:greater than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption A:constant volume processOption B:adiabatic processOption C:constant pressure processOption D:isothermal processOption D:isothermal processQ6.The value of gas constant (R) in S. I. units isOption A:0.287 J/kgKOption B:2.87 J/kgK		
Option A:equal to oneOption B:less than oneOption C:greater than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption A:constant volume processOption B:adiabatic processOption C:constant pressure processOption D:isothermal processOption A:constant pressure processOption B:adiabatic processOption D:isothermal processOption D:isothermal processOption A:0.287 J/kgKOption B:2.87 J/kgK	Q4.	The ratio of specific heat at constant pressure (c_p) and specific heat at constant
Option B:less than oneOption C:greater than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption A:constant volume processOption B:adiabatic processOption C:constant pressure processOption D:isothermal processQ6.The value of gas constant (R) in S. I. units isOption A:0.287 J/kgKOption B:2.87 J/kgK		volume (<i>c</i> _v) is
Option C:greater than oneOption D:none of theseQ5.If the value of $n = 0$ in the equation $pv^n = C$, then the process is calledOption A:constant volume processOption B:adiabatic processOption C:constant pressure processOption D:isothermal processQ6.The value of gas constant (R) in S. I. units isOption A:0.287 J/kgKOption B:2.87 J/kgK	Option A:	equal to one
Option D: none of these Q5. If the value of $n = 0$ in the equation $pv^n = C$, then the process is called Option A: constant volume process Option B: adiabatic process Option C: constant pressure process Option D: isothermal process Q6. The value of gas constant (R) in S. I. units is Option A: 0.287 J/kgK Option B: 2.87 J/kgK	Option B:	less than one
Q5. If the value of n = 0 in the equation $pv^n = C$, then the process is called Option A: constant volume process Option B: adiabatic process Option C: constant pressure process Option D: isothermal process Q6. The value of gas constant (R) in S. I. units is Option A: 0.287 J/kgK Option B: 2.87 J/kgK	Option C:	greater than one
Option A: constant volume process Option B: adiabatic process Option C: constant pressure process Option D: isothermal process Q6. The value of gas constant (R) in S. I. units is Option A: 0.287 J/kgK Option B: 2.87 J/kgK	Option D:	none of these
Option A: constant volume process Option B: adiabatic process Option C: constant pressure process Option D: isothermal process Q6. The value of gas constant (R) in S. I. units is Option A: 0.287 J/kgK Option B: 2.87 J/kgK		
Option B: adiabatic process Option C: constant pressure process Option D: isothermal process Q6. The value of gas constant (R) in S. I. units is Option A: 0.287 J/kgK Option B: 2.87 J/kgK	Q5.	If the value of $n = 0$ in the equation $pv^n = C$, then the process is called
Option C: constant pressure process Option D: isothermal process Q6. The value of gas constant (R) in S. I. units is Option A: 0.287 J/kgK Option B: 2.87 J/kgK	Option A:	constant volume process
Option D: isothermal process Q6. The value of gas constant (R) in S. I. units is Option A: 0.287 J/kgK Option B: 2.87 J/kgK	Option B:	adiabatic process
Q6. The value of gas constant (R) in S. I. units is Option A: 0.287 J/kgK Option B: 2.87 J/kgK	Option C:	constant pressure process
Option A: 0.287 J/kgK Option B: 2.87 J/kgK	Option D:	isothermal process
Option A: 0.287 J/kgK Option B: 2.87 J/kgK		
Option B: 2.87 J/kgK	Q6.	The value of gas constant (R) in S. I. units is
	Option A:	0.287 J/kgK
	Option B:	2.87 J/kgK
Option C: 28.7 J/kgK	Option C:	28.7 J/kgK
Option D: 287 J/kgK	Option D:	287 J/kgK

Q7.	Calculate the final temperature and pressure if the fluid is compressed reversibly
	from volume of 7m3 to 1 m3 when the initial temperature and pressure of fluid
	as 20°C and 1 bar respectively. Assume the index of compression as and 1.4, Cp =
	1.005 and Cv = 0.718 and R = 0.287 KJ/kg-K.
Option A:	T=400.12K & P=18.68bar
Option B:	T=638.1K & P=15.25bar
Option C:	T=775.9K & P=10.38bar
Option D:	T=599.9K & P=12.28bar
Q8.	Find the correct statement
Option A:	The algebraic sum of net heat and work interactions between a system and the
Option A.	surrounding in the thermodynamic Cycle is zero.
Option B:	The algebraic sum of net heat and work interactions between a system and the
option D.	surrounding in the thermodynamic Cycle is infinity.
Option C:	The sum of heat and work interactions between systems is zero.
Option D:	Q+W=dU
1	
Q9.	Which is correct statement of Clausius?
Option A:	It is impossible to devise a cyclically operating device,
option 71.	which produces no other effect than the extraction of heat from a single thermal
	reservoir and delivers an equivalent amount of work.
Option B:	It is impossible to construct a device that operates in a cycle and
1	produces no effect other than the transfer of heat from a lower-temperature body
	to higher-temperature body.
Option C:	It is impossible to construct a device that operates in a cycle and
	produces no effect other than the transfer of heat from a lower-temperature body
	to higher-temperature body without taking aid of any external work.
Option D:	Heat engine with single thermal reservoir is not possible.
.	
Q10.	A cycle consisting of two isothermal and two isentropic processes, is known as
Option A:	Carnot cycle
Option B:	Stirling cycle
Option C:	Ericsson cycle
Option D:	Joule cycle
Q11.	Which is not a P,V,T relation for polytropic process?
Option A:	$P2/P1 = (V1/V2)^{n}$
	, , ,,
Q11.	Which is not a P,V,T relation for polytropic process?
1	· · · · ·

Option C:	$T2/T1 = (P2/P1)^{(n-1)/n}$
Option D:	$T2/T1 = (V1/V2)^{n-1}$
Q12.	An inventor claims that his engine absorbs 300 kJ of energy from a thermal
	reservoir at 325 K and delivers 75 kJ of work. The inventor also states that his
	engine has two heat rejections: 125 kJ to a reservoir at 300 K and 100 kJ to a
	reservoir at 275 K. Check the validity of his claim.
Option A:	CLAIM IS TRUE
Option B:	ENGINE IS REVERSIBLE
Option C:	ENGINE IS IRREVERSIBLE
Option D:	CLAIM IS INTOLERABLE
012	
Q13.	Cp-Cv=& Cp/Cv=
Option A:	R&γ
Option B:	n & γ
Option C:	R&n
Option D:	h & s
Q14.	At inlet to a certain steady flow nozzle, the fluid parameter is Enthalpy = 2850
	kJ/kg, velocity = 50 m/s, area = 0.1 m2, specific volume = 0.18 m3/kg at the
	discharge end enthalpy is 2650 kJ/kg and the specific volume is 0.49 m3/kg.
	Make calculation for the velocity of fluid. The nozzle is horizontal and there is
	negligible heat loss from it.
Option A:	552.8m/s
Option B:	634.4m/s
Option C:	366.2m/s
Option D:	100.2m/s
- 1	
Q15.	A system at 500K receives 7200KJ/min from a source at 1000K. The temperature
	of atmosphere is 300K. Assuming that the temperature of system and source
	remain constant during heat transfer find out, a) The entropy produced during
	heat transfer b) The increase in unavailable energy after heat transfer
Option A:	6.7KJ/min-K b) 2160kJ
Option B:	7.2KJ/min-K b) 4320kJ
Option C:	7.2KJ/min-K b) 2160kJ
Option D:	72KJ/min-K b) 132kJ
011	
Q16.	How much heat is required for generating 2 kg of superheated steam at 17 bar
	and 300 degree celcius from water at 0 degree celcius?
Ontion A:	2702.4 k1/kg
Option A:	2793.4 kJ/kg

Option B:	2793.8 kJ/kg
Option C:	3033.5 kJ/kg
Option D:	6067 kJ/kg
Q17.	Steam at 120 bar has the specific volume of 0.01721 m3/kg. Find the
	temperature & specific enthalpy.
Option A:	300°C & 2698.2 kJ/kg
Option B:	350°C & 2847.7 kJ/kg
Option C:	420°C & 5.500 kJ/kg
Option D:	102.0°C & 2722.4 kJ/kg
Q18.	In a steam turbine steam at 20 bar and 360 °C is expanded to 0.08bar. At the end
	of condenser, saturated water is available for pumping to boiler. Assume ideal
	processes, find rankine efficiency.
Option A:	33.2%
Option B:	32.5%
Option C:	67.5%
Option D:	66.8%
1	
Q19.	In a reheat cycle, the initial steam pressure and the maximum temperature are
	150bar and 550°C respectively. If the Condenser pressure is0.1bar and the
	moisture at the condenser inlet is 5% determine reheat pressure. Assume ideal
	process
Option A:	10 bar
Option B:	5 bar
Option C:	13.2 bar
Option D:	20 bar
1	
Q20.	When cut-off ratio is the efficiency of Diesel cycle approaches to
	Otto cycle efficiency
	otto cycle emiliency
Option A:	zero
Option B:	1/5
Option C:	4/5
Option D:	1
1	
Q21.	A process, in which the temperature of the working substance remains constant
	during its expansion or compression, is called
Option A:	isothermal process
Option B:	hyperbolic process
Option C:	adiabatic process
Option D:	polytropic process
option D.	
Q22.	The gas in cooling chamber of a closed cycle gas turbine is cooled at
Option A:	constant volume

Option B:	constant temperature
Option C:	constant pressure
Option D:	none of these
1	
Q23.	Which of the following is the correct statement?
Option A:	For a given compression ratio, both Otto and Diesel cycles have the same
	efficiency.
Option B:	For a given compression ratio, Otto cycle is more efficient than Diesel cycle.
Option C:	For a given compression ratio, Diesel cycle is more efficient than Otto cycle.
Option D:	The efficiency of Otto or Diessel cycle has nothing to do with compressioin ratio.
Q24.	One reversible heat engine operates between 1600 K and T_2 K and another
	reversible heat engine operates between T_2 K and 400 K. If both the engines
	have the same heat input and output, then temperature T_2 is equal to
Option A:	800K
Option B:	1000K
Option C:	1200K
Option D:	1400K
Q25.	In closed cycle gas turbine, the air is compressed
Option A:	isothermally
Option B:	isentropically
Option C:	polytropically
Option D:	none of these