University of Mumbai

Examination 2020 under cluster

\qquad (Lead College Shortname)
Program: EXTC Engineering
Curriculum Scheme: Rev 2012
Examination: Second Year Semester IV
Course Code: ETS 401 and Course Name: Applied Mathematics IV
Time: 1 hour
Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	Find eigen values of $A^{2}-6 A^{-1}+3 \mathrm{I} \quad, \quad A=\left[\begin{array}{ccc}6 & 0 & 0 \\ -6 & 3 & 0 \\ 2 & -4 & 1\end{array}\right]$
Option A:	36,10,-2
Option B:	38,10,-2
Option C:	-38,11,-2
Option D:	38,10,2
Q2.	Evaluate $\ddagger z^{3} d z$ where C is a unit circle from $\theta=0$ to $\theta=\pi$
Option A:	0
Option B:	0.5
Option C:	2
Option D:	$\frac{1}{2}$
Q3.	Shortest distance between any two points in a plane is ___
Option A:	Straight Line
Option B:	Parabola
Option C:	Hyperbola
Option D:	Rectangular hyperbola
Q4.	Find mean and variance of Binomial distribution $(0.2+0.8)^{10}, q=0.2$
Option A:	2,1.6
Option B:	8,1.6
Option C:	7,16
Option D:	2,8
Q5.	Given $A=\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$, then
Option A:	A is derogatory and degree of minimal polynomial is 2
Option B:	A is non derogatory and degree of minimal polynomial is 3
Option C:	A is non derogatory and degree of minimal polynomial is 2
Option D:	A is derogatory and degree of minimal polynomial is 3

University of Mumbai

Examination 2020 under cluster (Lead College Shortname)

University of Mumbai

Examination 2020 under cluster (Lead College Shortname)

Q12.	Using Cayley Hamilton Theorem Find A^{-1} in terms of $A, A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 1 & -5 \\ 0 & 0 & 1\end{array}\right]$
Option A:	$\frac{1}{5}\left(A^{2}+3 A+3 I\right)$
Option B:	$\frac{1}{5}\left(-A^{2}-3 A+3 I\right)$
Option C:	$\frac{1}{5}\left(-A^{2}+3 A-3 I\right)$
Option D:	$\frac{1}{5}\left(-A^{2}+3 A+3 I\right)$
Q13.	Using applications of residue theorem, $\int_{0}^{2 \pi} \frac{d \theta}{2+5 \sin \theta}=$
Option A:	$\int_{c} \frac{2 d z}{2 z^{2}+4 i z+5} \text { where } \mathrm{c} \text { is }\|\mathrm{z}\|=1$
Option B:	$\int_{c} \frac{2 d z}{5 z^{2}+4 i z-5} \text { where } \mathrm{c} \text { is }\|\mathrm{z}\|=1$
Option C:	$\int_{c} \frac{2 d z}{3 z^{2}+10 i z-3} \text { where } \mathrm{c} \text { is }\|\mathrm{z}\|=1$
Option D:	$\int_{c} \frac{d z}{2 z^{2}+10 i z-2} \text { where } \mathrm{c} \text { is }\|\mathrm{z}\|=1$
Q14.	Find eigen values of $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$
Option A:	1,2
Option B:	0,5
Option C:	5,1
Option D:	0,1
Q15.	Find the extremals of $\int_{x_{1}}^{x_{2}}\left(1+y^{\prime}\right) y^{\prime} d x$.
Option A:	$2 y=C_{1} x+C_{2}$
Option B:	$3 y=C_{1} x+C_{2}$
Option C:	$y=C_{1} 2 x+C_{2}$
Option D:	$2 y=C_{1} 2 x+C_{2}$
Q16.	A random variable X has a probability mass function $p(x)=k x^{3} ; x=1,2,3,4$. Then k is
Option A:	1/10
Option B:	1/30
Option C:	1/100
Option D:	1
Q17.	Four unbiased coins are tossed 160 times The expected frequencies of getting $\{0,1,2,3,4\}$ heads are respectively

University of Mumbai

Examination 2020 under cluster \qquad (Lead College Shortname)

Option A:	0,10,20,30,40
Option B:	20,40,60,80,40
Option C:	20,30,60,30,20
Option D:	10,40,60,40,10
Q18.	Evaluate $\int_{c} \frac{z d z}{(z-1)(z-2)} d z$ where c is the circle $\|z\|=3$
Option A:	$2 \pi i$
Option B:	$6 \pi i$
Option C:	$4 \pi i$
Option D:	$-2 \pi i$
Q19.	Find k if probability distribution function is given as $f(x)= \begin{cases}k \cdot x^{2} \text { for } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}$
Option A:	8/3
Option B:	8
Option C:	3/8
Option D:	$3 / 4$
Q20.	Find $5^{A}, A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
Option A:	$\left[\begin{array}{ll} 5 & 0 \\ 0 & 5 \end{array}\right]$
Option B:	$\left[\begin{array}{cc} 5 & 0 \\ 0 & 25 \end{array}\right]$
Option C:	$\left[\begin{array}{rr} 5 & 1 \\ 0 & 25 \end{array}\right]$
Option D:	$\left[\begin{array}{cc}25 & 0 \\ 0 & 5\end{array}\right]$
Q21.	Find the angle between $u=(2,-1,1) \& v=(1,1,2)$
Option A:	$\frac{\pi}{6}$
Option B:	$\frac{\pi}{3}$
Option C:	0
Option D:	$\frac{\pi}{2}$
Q22.	Find additive identity of vector space defined as $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$
Option A:	$\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right]$
Option B:	0
Option C:	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Option D:	$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

Examination 2020 under cluster \qquad (Lead College Shortname)

Q23.	X is normally distributed variable with mean 30 and standard deviation 4, find $\mathrm{P}(\mathrm{X}<40)$. (Given: Area between $\mathrm{Z}=0$ to $\mathrm{Z}=2.5$ is 0.4938 .)
Option A:	0.9878
Option B:	0.4878
Option C:	0.9938
Option D:	0.0062
Q24.	Find orthogonal basis of R^{2} of $S=\{(3,1),(2,2)\}$
Option A:	$\left\{(3,1),\left(-\frac{2}{5}, \frac{6}{5}\right)\right\}$
Option B:	$\left\{(3,1),\left(\frac{2}{5}, \frac{6}{5}\right)\right\}$
Option C:	$\left\{(3,1),\left(-\frac{2}{5},-\frac{6}{5}\right)\right\}$
Option D:	$\left\{(3,1),\left(-\frac{3}{5}, \frac{6}{5}\right)\right\}$
Q25.	Find matrix associated with the following quadratic form $x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2}+2 x_{2} x_{3}-2 x_{1} x_{3}+4 x_{1} x_{2}$
Option A:	$\left[\begin{array}{rrc}1 & 2 & -1 \\ 2 & 4 & 1 \\ -1 & 1 & 3\end{array}\right]$
Option B:	$\left[\begin{array}{rrr}1 & 2 & 1 \\ 2 & 4 & -1 \\ 1 & -1 & 3\end{array}\right]$
Option C:	$\left[\begin{array}{ccc}1 & 2 & -1 \\ 4 & 2 & 1 \\ 3 & -1 & 1\end{array}\right]$
Option D:	$\left[\begin{array}{ccc}1 & -1 & 2 \\ -2 & 4 & 1 \\ -1 & 1 & 3\end{array}\right]$

