University of Mumbai

Examination 2020 under cluster APSIT

Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination: Third Year Semester V
Course Code: CSC504 and Course Name: Theory of Computer Science
Time: 1 hour
Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	In a parse tree leaf node contains
Option A:	Start Symbol
Option B:	Production rules
Option C:	Non terminals
Option D:	Terminals
Q2.	Which of the following is Arden's theorem
Option A:	$\begin{aligned} & \mathrm{R}=\mathrm{Q}+\mathrm{RP} . \\ & \mathrm{R}=\mathrm{Q} P^{*} \end{aligned}$
Option B:	$\begin{aligned} & R=R+Q P . \\ & R=Q P^{*} \end{aligned}$
Option C:	$\begin{aligned} & \mathrm{Q}=\mathrm{R}+\mathrm{QP} . \\ & \mathrm{R}=\mathrm{QP} * \end{aligned}$
Option D:	$\begin{aligned} & \mathrm{Q}=\mathrm{R}+\mathrm{QP} . \\ & \mathrm{R}=\mathrm{QR} * \end{aligned}$
Q3.	A PDA can be formally described as a
Option A:	4-tuple ($\mathrm{Q}, \Sigma, \mathrm{S}, \delta$)
Option B:	5-tuple ($\mathrm{Q}, \Sigma, \delta, q 0, F)$
Option C:	6-tuple ($Q, \Sigma, S, \delta, q 0, F)$
Option D:	7-tuple ($\mathrm{Q}, ~ \Sigma, ~ S, ~ \delta, ~ q 0, ~ I, ~ F) ~$
Q4.	In PDA δ is the transition function defined as:
Option A:	$\mathrm{Q} \times \Sigma \rightarrow \mathrm{Q}$
Option B:	$\mathrm{Q} \times \mathrm{X} \rightarrow \mathrm{Q} \times \mathrm{X} \times$ \{Left_shift, Right_shift $\}$
Option C:	$Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow 2^{Q}$
Option D:	$\mathrm{Q} \times(\Sigma \cup\{\varepsilon\}) \times \mathrm{S} \times \mathrm{Q} \times \mathrm{S}^{*}$
Q5.	A Turing machine that is able to simulate other Turing machines:
Option A:	Nested Turing machines
Option B:	Multi tape Turing machine
Option C:	Universal Turing machines
Option D:	Multi Purpose Turing Machine
Q6.	A turing machine with several tapes in known as:
Option A:	Multi-tape turing machine
Option B:	Poly-tape turing maching
Option C:	Universal turing machine

University of Mumbai

Examination 2020 under cluster APSIT

Option D:	Multi Purpose Turing Machine
Q7.	The value of n if turing machine is defined using n -tuples:
Option A:	6
Option B:	7
Option C:	8
Option D:	5
Q8.	Which of the following statements are false?
Option A:	Every recursive language is recursively ennumerable
Option B:	Recursively ennumerable language may not be recursive
Option C:	Recursive languages may not be recursively ennumerable
Option D:	Every recursively ennumerable language is recursive
Q9.	Which among the following options are correct? Statement 1: TMs can accept languages that are not accepted by any PDA with one stack. Statement 2: But PDA with two stacks can accept any language that a TM can accept.
Option A:	Statement 1 and 2, both are correct
Option B:	Statement 1 is correct, but Statement 2 is false
Option C:	Statement 2 is correct while Statement 1 is false
Option D:	Statement 1 and 2, both are false
Q10.	A language L is said to be \qquad if there is a turing machine M such that $L(M)=L$ and M halts at every point.
Option A:	Turing acceptable
Option B:	Decidable
Option C:	Undecidable
Option D:	neither turing acceptable nor decidable
Q11.	Which problem states that any non-trivial semantic property of a language which is recognized by a Turing machine is undecidable. A property, P , is the language of all Turing machines that satisfy that property.
Option A:	Post Correspondence Problem
Option B:	Halting Problem
Option C:	Rice's Theorem
Option D:	Decidability Problem
Q12.	In this problem we have N number of Dominos (tiles). The aim is to arrange tiles in such order that string made by Numerators is same as string made by Denominators.
Option A:	Looping Problem
Option B:	Post Correspondence Problem
Option C:	Rice's Theorem
Option D:	Halting Problem

University of Mumbai

Examination 2020 under cluster APSIT

Q13.	There are how many tuples in finite state machine.
Option A:	4
Option B:	5
Option C:	6
Option D:	7
Q14.	For which of the following applications regular expressions can be used?
Option A:	Traffic Light
Option B:	Developing string
Option C:	Simulating sequential circuits
Option D:	Designing computers
Q15.	At what phase of compiler grammar of the programming is checked?
Option A:	Code generation
Option B:	Syntax Analysis
Option C:	Code Optimization
Option D:	Semantic Analysis
Q16.	A pushdown automaton is a way to implement:
Option A:	Regular grammar
Option B:	Context-sensitive grammar
Option C:	Context-free grammar
Option D:	Unrestricted grammar
Q17.	Who invented the Turing machine?
Option A:	Alan Turing
Option B:	Mathew Turing
Option C:	Smith Turing
Option D:	John Hayes Turing
Q18.	Halting Problem is
Option A:	Decidable problem.
Option B:	Complex problem.
Option C:	An Undecidable Problem.
Option D:	Simple problem.
Q19.	Transition function of DFA maps.
Option A:	г*Q-> ${ }^{*}$
Option B:	Q* ${ }^{*}->\Sigma$
Option C:	$\Sigma^{*} \Sigma->Q$
Option D:	Q * $\Sigma->$ Q
Q20.	The basic limitation of finite automata is that
Option A:	It can't remember arbitrary large amount of information.
Option B:	It sometimes recognizes grammar that are not regular.

University of Mumbai

Examination 2020 under cluster APSIT

Option C:	It sometimes fails to recognize regular grammar.
Option D:	It does everything
Q21.	Regular Expression denote precisely what of Regular Language.
Option A:	Class
Option B:	Power Set
Option C:	Super Set
Option D:	Subset
Q22.	While applying Pumping lemma over a language, we consider a string w that belong to L and fragment it into how many parts.
Option A:	2
Option B:	5
Option C:	3
Option D:	6
Q23.	Which of the production rule can be accepted by Chomsky grammar?
Option A:	A->CD
Option B:	A->aB
Option C:	A->Ba
Option D:	A->Dd
Q24.	In a parse tree leaf node contains
Option A:	Start Symbol
Option B:	Production rules
Option C:	Non terminals
Option D:	Terminals
Q25.	Which of the following is unit Production
Option A:	A->Ca
Option B:	A->€
Option C:	A->B
Option D:	A->AB

