Program: Bachelor of Engineering Curriculum Scheme: Rev2012 Examination: Second Year Semester III Course Code: CEC306 and Course Name: FLUID MECHANICS I

Time: 1 hour

Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	Assuming constant temperature condition and air to be an ideal gas, the variation
	in atmospheric pressure with height calculated from fluid statics is
Option A:	linear
Option B:	exponential
Option C:	quadratic
Option D:	cubic
Q2.	For a Newtonian fluid
Option A:	Shear stress is proportional to shear strain
Option B:	Rate of shear stress is proportional to shear strain
Option C:	Shear stress is proportional to rate of shear strain
Option D:	Rate of shear stress is proportional to rate of shear strain
Q3.	In a uniform solid body weighs 50 N in air and 30 N in water. Its specific gravity
	is
Option A:	1.67
Option B:	2.50
Option C:	1.50
Option D:	3.00
Q4.	A static fluid can have
Option A:	non-zero normal and shear stress
Option B:	positive normal stress and zero shear stress
Option C:	negative normal stress and zero shear stress
Option D:	zero normal stress and non-zero shear stress
Q5.	Oil in a hydraulic cylinder is compressed from an initial volume 2 m3 to 1.96 m3.
	If the pressure of oil in the cylinder changes from 40 MPa to 80 MPa during
	compression the bulk modulus of elasticity of oil is
Option A:	8000 MPa
Option B:	4000 MPa
Option C:	2000 MPa
Option D:	1000 MPa
Q6.	Relative density of mercury is
Option A:	1000
Option B:	9.81
Option C:	
Option D:	13.6
Q7.	A stone weighs 450 N in air and 200 N in water. Compute the volume of stone

Option B: 0.15 m ³ Option D: 0.05 m ³ QR The pressure intensity at a point in water column is given as 3.924 N/cm ² . Find the corresponding height of water QR The pressure intensity at a point in water column is given as 3.924 N/cm ² . Find the corresponding height of water Option A: 2 m Option D: 5 m QP According to Archimede's principle, if a body is immersed partially or fully in a fluid then the buoyancy force is the weight of fluid displaced by the body. Option D: 5 m Option A: less than Option B: more than Option D: Uppredictable Q10. A fluid flow is represented by the velocity field V= axî+ ayĵ, where a is constant. The equation of stream line passing through a point (1, 2) is Option B: $x - 2y = 0$ Q10. A fluid flow is represented by the velocity field V= axî+ ayĵ, where a is constant. The equation of stream line passing through a point (1, 2) is Option B: $x - y = 0$ Q10. A fluid flow is represented by the velocity field V= axî+ ayĵ, where a is constant. The equation of stream line passing through a point (1, 2) is Option D: $2x + y = 0$ Option D: $2x - y = 0$ <th>Option A:</th> <th>0.25 m^3</th>	Option A:	0.25 m^3
Option C: 0.35 m^3 Q8. The pressure intensity at a point in water column is given as 3.924 N/cm^2 . Find the corresponding height of water Q9. According to Archimede's principle, if a body is immersed partially or fully in a fluid then the buoyancy force is the weight of fluid displaced by the body. Qption A: S m Qption B: decording to Archimede's principle, if a body is immersed partially or fully in a fluid then the buoyancy force is the weight of fluid displaced by the body. Qption A: less than Option B: more than Option D: Unpredictable Q10. A fluid flow is represented by the velocity field V= axî+ ayî, where a is constant. The equation of stream line passing through a point (1, 2) is Option B: $2x + 2y = 0$ Option C: $x + 2y = 0$ Option B: $2x - y = 0$ Q10. The liquid particles at all ferent sections have different velocities Option B: $2x - y = 0$ Q11. The flow in a pipe or channel is said to be non-uniform when Option B: The liquid particles at all sections have the same velocities Option B: The liquid particles at all sections have the same velocities Option B: The liquid particle	Option B:	0.15 m ³
Option D: 0.05 m^3 Q8. The pressure intensity at a point in water column is given as 3.924 N/cm^3 . Find the corresponding height of water Option A: 2 m Option B: 4 m Option D: 5 m Q9. According to Archimede's principle, if a body is immersed partially or fully in a fluid then the buoyancy force is the weight of fluid displaced by the body. Option A: less than Option B: more than Option D: Unpredictable Q10. A fluid flow is represented by the velocity field V= axî+ ayĵ, where a is constant. The equation of stream line passing through a point (1, 2) is Option A: $x - 2y = 0$ Option B: $2x + y = 0$ Option D: $2x - y = 0$ Option A: The flow in a pipe or channel is said to be non-uniform when Option B: The liquid particles at different sections have different velocities Option D: Each liquid particles at all sections have the same velocities Option B: The quantity of liquid flowing per second is constant Option D: Each liquid particle has a definite path Q11. The flow in a pipe or channel is said to be non-uniform when Option A:	Option C:	0.35 m ³
Q8.The pressure intensity at a point in water column is given as 3.924 N/cm². Find the corresponding height of waterOption A:2 mOption B:4 mOption D:5 mQ9.According to Archimede's principle, if a body is immersed partially or fully in a fluid then the buoyancy force is the weight of fluid displaced by the body.Option A:less thanOption B:more thanOption D:UnpredictableOption D:UnpredictableOption A:less thanOption D:UnpredictableOption D:UnpredictableOption A: $x > y = 0$ Option A: $x - 2y = 0$ Option B: $2x + y = 0$ Option D: $2x - y = 0$ Option B:The liquid particles at all sections have different velociticsOption D:Each liquid particles at all sections have the same velociticsOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption B:Stready flowOption B:Issistence of velocity potential implied thatOption B:Issistence of velocity potential implied thatOption B:Fluid is continuousOption B:Fluid is continuousOption B:Fluid is continuousOpti	Option D:	0.05 m ³
Q8. The pressure intensity at a point in water column is given as 3.924 N/cm^2 . Find the corresponding height of water Option B: 2 m Option C: 3 m Option D: 5 m Q9. According to Archimede's principle, if a body is immersed partially or fully in a fluid then the buoyancy force is the weight of fluid displaced by the body. Option A: less than Option D: 5 m Option A: less than Option D: Uppredictable Q10. A fluid flow is represented by the velocity field V= axî+ ayĵ, where a is constant. The equation of stream line passing through a point (1, 2) is Option B: $2x + y = 0$ Option D: $2x - y = 0$ Option A: $x + 2y = 0$ Option A: The flow in a pipe or channel is said to be non-uniform when Option A: The liquid particles at all sections have thre same velocities Option B: The quantity of liquid flowing per second is constant Option A: The liquid particles at all sections have thre same velocities Option A: The liquid particles at all sections have the same velocities Option B: Streamlines, path lines and streak lines are virtually identical for Option B:	•	
corresponding height of waterOption A:2 mOption B:4 mOption D:5 mQ9.According to Archimede's principle, if a body is immersed partially or fully in a fluid then the buoyancy force is the weight of fluid displaced by the body.Option A:less thanOption B:more thanOption D:UnpredictableQ10.A fluid flow is represented by the velocity field V= axi+ ayj, where a is constant. The equation of stream line passing through a point (1, 2) isOption A: $x - 2y = 0$ Option B: $2x + y = 0$ Option D: $2x + y = 0$ Option D: $2x - y = 0$ Option C: $x + 2y = 0$ Option D: $2x - y = 0$ Option D: $2x - y = 0$ Option C: $x + 2y = 0$ Option A:The liquid particles at different sections have different velocitiesOption D:2x - y = 0Q11.The flow in a pipe or channel is said to be non-uniform when Option A:Option D:Each liquid particles at all sections have the same velocitiesOption D:Each liquid particles at all sections have different velocitiesOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical for Option B:Q13.Existence of velocity potential implied that Option A:Option D:Fluid is icontinuousOption D:Fluid is continuousOption D:Fluid is continuousOption B:Fluid is icontinplice <tr< td=""><td>Q8.</td><td>The pressure intensity at a point in water column is given as 3.924 N/cm². Find the</td></tr<>	Q8.	The pressure intensity at a point in water column is given as 3.924 N/cm ² . Find the
Option A: 2 m Option D: 3 m Option D: 5 m Q9. According to Archimede's principle, if a body is immersed partially or fully in a fluid then the buoyancy force is the weight of fluid displaced by the body. Option A: less than Option D: 5 m Option C: equal to Option D: Upredictable Q10. A fluid flow is represented by the velocity field V= axî+ ayî, where a is constant. The equation of stream line passing through a point (1, 2) is Option A: $x - 2y = 0$ Option B: $2x + y = 0$ Option D: $2x - y = 0$ Option B: $2x + y = 0$ Option D: $2x - y = 0$ Option D: $2x - y = 0$ Option B: The flow in a pipe or channel is said to be non-uniform when Option D: $2x - y = 0$ Option D: Each liquid particles at all sections have different velocities Option D: Each liquid particles at all sections have the same velocities Option D: Each liquid particle ha		corresponding height of water
Option B: 4 m Option C: 3 m Option D: 5 m Q9. According to Archimede's principle, if a body is immersed partially or fully in a fluid then the buoyancy force is the weight of fluid displaced by the body. Option A: less than Option D: once than Option D: unsert the weight of fluid displaced by the body. Option B: more than Option D: Unpredictable Q10. A fluid flow is represented by the velocity field V= axi+ ayj, where a is constant. The equation of stream line passing through a point (1, 2) is Option A: $x - 2y = 0$ Option D: $2x + y = 0$ Option D: $2x - y = 0$ Option D: $2x - y = 0$ Option C: $x - 2y = 0$ Option D: $2x - y = 0$ Option D: $2x - y = 0$ Option C: The flow in a pipe or channel is said to be non-uniform when Option D: $2x - y = 0$ Option D: $2x - y = 0$ Option D: Each liquid particles at all sections have the same velocities Option B: steady flow Option B: Streamlines, path lines and str	Option A:	2 m
Option C: 3 m Q9. According to Archimede's principle, if a body is immersed partially or fully in a fluid then the buoyancy force is the weight of fluid displaced by the body. Option A: less than Option B: more than Option D: Upmeredicable Q10. A fluid flow is represented by the velocity field V= axi+ ayj, where a is constant. The equation of stream line passing through a point (1, 2) is Option B: $x - 2y = 0$ Option B: $2x + y = 0$ Option D: $2x + y = 0$ Option D: $2x - y = 0$ Option B: $2x - y = 0$ Q11. The flow in a pipe or channel is said to be non-uniform when Option B: The liquid particles at different sections have different velocities Option B: The liquid particles at all sections have the same velocities Option D: Each liquid particle has a definite path Q12. Streamlines, path lines and streak lines are virtually identical for Option B: steady flow Option C: Flow of ideal fluid Option B: steady flow Option B: steady flow Option C: Flow of ideal fluid Opt	Option B:	4 m
Option D: 5 m Q9. According to Archimede's principle, if a body is immersed partially or fully in a fluid then the buoyancy force is the weight of fluid displaced by the body. Option A: less than Option D: more than Option D: uppredictable Q10. A fluid flow is represented by the velocity field V= $ax\hat{i} + ay\hat{j}$, where a is constant. The equation of stream line passing through a point (1, 2) is Option A: $x - 2y = 0$ Option D: $2x + y = 0$ Option D: $2x - y = 0$ Option D: $2x - y = 0$ Option A: The liquid particles at different sections have different velocities Option B: The liquid particles at different sections have different velocities Option D: $2x - y = 0$ Q11. The flow in a pipe or channel is said to be non-uniform when Option B: The liquid particles at all sections have the same velocities Option D: $2x - y = 0$ Q12. Streamlines, path lines and streak lines are virtually identical for Option D: Each liquid particle has a definite path Q12. Streamlines, path lines and streak lines are virtually identical for Option A: Uniform flow	Option C:	3 m
Q9. According to Archimede's principle, if a body is immersed partially or fully in a fluid then the buoyancy force is the weight of fluid displaced by the body. Option A: less than Option B: more than Option D: Upredictable Q10. A fluid flow is represented by the velocity field $V= axi+ ayj$, where a is constant. The equation of stream line passing through a point (1, 2) is Option A: $x - 2y = 0$ Option B: $2x + y = 0$ Option D: $2x + y = 0$ Option D: $2x - y = 0$ Option A: The flow in a pipe or channel is said to be non-uniform when Option A: The liquid particles at different sections have different velocities Option D: Each liquid particles at all sections have the same velocities Option D: Each liquid particles as a definite path Q12. Streamlines, path lines and streak lines are virtually identical for Option A: Uniform flow Q13. Existence of velocity potential implied that Option B: Fluid is continuous Option C: Fluid is continuous Option D: Fluid is continuous Option A: Fluid is continuous Option B:	Option D:	5 m
Q9.According to Archimede's principle, if a body is immersed partially or fully in a fluid then the buoyancy force is the weight of fluid displaced by the body.Option A:less thanOption B:more thanOption D:UnpredictableQ10.A fluid flow is represented by the velocity field $V=ax^2+ay^2$, where a is constant. The equation of stream line passing through a point (1, 2) isOption B: $2x + y = 0$ Option C: $x - 2y = 0$ Option D: $2x - y = 0$ Option C: $x + 2y = 0$ Option A: $x - 2y = 0$ Option B: $2x - y = 0$ Option C: $x + 2y = 0$ Option C: $x + 2y = 0$ Option C: $The liquid particles at different sections have different velocitiesOption A:The liquid particles at all sections have the same velocitiesOption D:Each liquid particles at all sections have the same velocitiesOption D:Each liquid particles has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption B:Option C:Flow of ideal fluidOption D:Q13.Existence of velocity potential implied thatOption B:Q14.Coefficient of Discharge is equal toOption A:Q14.Coefficient of Discharge is equal toOption A:$	1	
fluid then the buoyancy force is the weight of fluid displaced by the body.Option A:less thanOption B:more thanOption D:UnpredictableQ10.A fluid flow is represented by the velocity field V= $axi+ayj$, where a is constant. The equation of stream line passing through a point $(1, 2)$ isOption A: $x - 2y = 0$ Option B: $2x + y = 0$ Option D: $2x - y = 0$ Q11.The flow in a pipe or channel is said to be non-uniform whenOption A:The liquid particles at different sections have different velocitiesOption D:Each liquid particles at all sections have the same velocitiesOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption A:Uniform flowOption D:Nou uniform flowQ13.Existence of velocity potential implied thatOption A:Fluid is irrotationalOption D:Fluid is icontinuousOption D:Fluid is continuousOption D:Fluid is compressibleOption A:Coefficient of Discharge is equal toOption A:Coefficient of Discharge is equal to	Q9.	According to Archimede's principle, if a body is immersed partially or fully in a
body.Option A:less thanOption B:more thanOption C:equal toOption D:UnpredictableQ10.A fluid flow is represented by the velocity field V= $ax\hat{i}+ay\hat{j}$, where a is constant. The equation of stream line passing through a point (1, 2) isOption A: $x - 2y = 0$ Option B: $2x + y = 0$ Option D: $2x - y = 0$ Q11.The flow in a pipe or channel is said to be non-uniform whenOption A:The liquid particles at different sections have different velocitiesOption B:The liquid particles at all sections have the same velocitiesOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption A:Uniform flowOption D:Non uniform flowOption B:steady flowingQ13.Existence of velocity potential implied thatOption B:Fluid is continuousOption D:Fluid is compressibleOption D:Fluid is icroationalOption A:Fluid is icroationalOption A:Fluid is compressibleOption A:Fluid is compressibleOption A:Coefficient of Discharge is equal toOption A:Coefficient of Discharge is equal to		fluid then the buoyancy force is the weight of fluid displaced by the
Option A:less thanOption B:more thanOption C:equal toOption D:UnpredictableQ10.A fluid flow is represented by the velocity field $V= ax^2+ ay^2$, where a is constant. The equation of stream line passing through a point (1, 2) isOption A: $x - 2y = 0$ Option B: $2x + y = 0$ Option D: $2x - y = 0$ Q11.The flow in a pipe or channel is said to be non-uniform when Option B:Option B:The liquid particles at different sections have different velocitiesOption D:Each liquid particles at all sections have the same velocitiesOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical for Option B:Option D:Flow of ideal fluid Option B:Q13.Existence of velocity potential implied that Option A:Q14.Coefficient of Discharge is equal to Option A:Q14.Coefficient of Discharge is equal to Option A:		body.
Option B:more thanOption C:equal toOption D:UnpredictableQ10.A fluid flow is represented by the velocity field $V= ax\hat{i}+ay\hat{j}$, where a is constant. The equation of stream line passing through a point (1, 2) isOption A: $x - 2y = 0$ Option B: $2x + y = 0$ Option D: $2x + y = 0$ Option D: $2x - y = 0$ Q11.The flow in a pipe or channel is said to be non-uniform whenOption B:The liquid particles at different sections have different velocitiesOption D:Each liquid particles at all sections have the same velocitiesOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption B:steady flowOption C:Flow of ideal fluidOption B:textsence of velocity potential implied thatOption C:Fluid is continuousOption C:Fluid is continuousOption D:Non uniform flowOption D:Fluid is continuousOption D:Fluid is continuousOption D:Fluid is continuousOption D:Fluid is continuousOption D:Fluid is compressibleQ14.Coefficient of Discharge is equal toOption A:Curficient of Discharge is equal to	Option A:	less than
Option C:equal toOption D:UnpredictableQ10.A fluid flow is represented by the velocity field V= $ax\hat{i}+ay\hat{j}$, where a is constant. The equation of stream line passing through a point (1, 2) isOption A: $x - 2y = 0$ Option B: $2x + y = 0$ Option C: $x + 2y = 0$ Option D: $2x - y = 0$ Q11.The flow in a pipe or channel is said to be non-uniform whenOption A:The liquid particles at different sections have different velocitiesOption D:Each liquid particles at all sections have the same velocitiesOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption B:steady flowOption D:Flow of ideal fluidOption A:Uniform flowQ13.Existence of velocity potential implied thatOption A:Fluid is continuousOption B:Fluid is continuousOption D:Fluid is continuousOption A:Fluid is continuousOption A:Fluid is continuousOption B:Fluid is idealOption C:Fluid is idealOption A:Fluid is continuousOption B:Fluid is continuousOption A:Fluid is idealOption A:Coefficient of Discharge is equal toOption A:Coefficient of Discharge is equal toOption A:Coefficient of Discharge is equal toOption A:Coefficient of Discharge is equal to	Option B:	more than
Option D:UnpredictableQ10.A fluid flow is represented by the velocity field $V=ax^{1}+ay^{1}_{0}$, where a is constant. The equation of stream line passing through a point (1, 2) isOption A: $x - 2y = 0$ Option D: $2x + y = 0$ Option D: $2x - y = 0$ Option D: $2x - y = 0$ Q11.The flow in a pipe or channel is said to be non-uniform when Option A: The liquid particles at different sections have different velocitiesOption B:The liquid particles at all sections have different velocitiesOption D:Each liquid particle at all sections have the same velocitiesOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption B:steady flowOption C:Flow of ideal fluidOption D:Non uniform flowQ13.Existence of velocity potential implied thatOption B:Fluid is continuousOption C:Fluid is continuousOption D:Fluid is idealOption A:Fluid is continuousOption B:Fluid is continuousOption C:Fluid is idealOption C:Fluid is idealOption A:Fluid is continuousOption B:Fluid is idealOption C:Fluid is idealOption C:Fluid is idealOption A:Fluid is idealOption A:Fluid is idealOption B:Fluid is idealOption A:Coefficient of Discharge is equal toOption A:Cv + C	Option C:	equal to
Q10.A fluid flow is represented by the velocity field V= $axi+ayj$, where a is constant. The equation of stream line passing through a point (1, 2) isOption A: $x - 2y = 0$ Option D: $2x + y = 0$ Option D: $2x - y = 0$ Q11.The flow in a pipe or channel is said to be non-uniform when Option A: The liquid particles at different sections have different velocitiesOption B:The liquid particles at all sections have different velocitiesOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical for Option B: steady flowOption C:Flow of ideal fluid Option B:Q13.Existence of velocity potential implied that Option A: Fluid is continuousQ14.Coefficient of Discharge is equal to Option A:Q14.Coefficient of Discharge is equal to Option A:Q14.Coefficient of Discharge is equal to Option A:	Option D:	Unpredictable
Q10.A fluid flow is represented by the velocity field $V= ax^2 + ay^2$, where a is constant. The equation of stream line passing through a point (1, 2) isOption A: $x - 2y = 0$ Option B: $2x + y = 0$ Option C: $x + 2y = 0$ Option D: $2x - y = 0$ Q11.The flow in a pipe or channel is said to be non-uniform whenOption A:The liquid particles at different sections have different velocitiesOption D:The liquid particles at all sections have the same velocitiesOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption B:steady flowOption C:Flow of ideal fluidOption C:Flow of ideal fluidOption B:steady flowQ13.Existence of velocity potential implied thatOption B:Fluid is continuousOption B:Fluid is continuousOption C:Fluid is continuousOption C:Fluid is continuousOption D:Fluid is continuousOption C:Fluid is continuousOption C:Fluid is continuousOption C:Fluid is continuousOption D:Fluid is irrotationalOption D:Fluid is irrotationalOption C:Fluid is idealOption A:Coefficient of Discharge is equal toOption A:Coefficient of Discharge is equal to		
The equation of stream line passing through a point $(1, 2)$ isOption A: $x - 2y = 0$ Option B: $2x + y = 0$ Option C: $x + 2y = 0$ Option D: $2x - y = 0$ Q11.The flow in a pipe or channel is said to be non-uniform whenOption A:The liquid particles at different sections have different velocitiesOption B:The liquid particles at all sections have the same velocitiesOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption B:steady flowOption D:Flow of ideal fluidOption D:Non uniform flowQ13.Existence of velocity potential implied thatOption A:Fluid is continuousOption B:Fluid is compressibleQ14.Coefficient of Discharge is equal toOption A:Cy+ Cc	Q10.	A fluid flow is represented by the velocity field $V = ax\hat{i} + ay\hat{j}$, where a is constant.
Option A: $x - 2y = 0$ Option B: $2x + y = 0$ Option C: $x + 2y = 0$ Option D: $2x - y = 0$ Q11.The flow in a pipe or channel is said to be non-uniform whenOption A:The liquid particles at different sections have different velocitiesOption B:The liquid particles at all sections have the same velocitiesOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption B:steady flowOption C:Flow of ideal fluidOption D:Non uniform flowQ13.Existence of velocity potential implied thatOption A:Fluid is continuousOption B:Fluid is continuousOption C:Fluid is continuousQ14.Coefficient of Discharge is equal toOption A:Cy + Cc		The equation of stream line passing through a point (1, 2) is
Option B: $2x + y = 0$ Option C: $x + 2y = 0$ Option D: $2x - y = 0$ Q11.The flow in a pipe or channel is said to be non-uniform whenOption A:The liquid particles at different sections have different velocitiesOption B:The liquid particles at all sections have the same velocitiesOption C:The quantity of liquid flowing per second is constantOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption A:Uniform flowOption D:Steady flowOption D:Non uniform flowQ13.Existence of velocity potential implied thatOption A:Fluid is continuousOption B:Fluid is continuousOption C:Fluid is irrotationalOption C:Fluid is idealOption A:Coefficient of Discharge is equal toOption A:Cy + Cc	Option A:	$\mathbf{x} - 2\mathbf{y} = 0$
Option C: $x + 2y = 0$ Q11.The flow in a pipe or channel is said to be non-uniform whenOption A:The liquid particles at different sections have different velocitiesOption B:The liquid particles at all sections have the same velocitiesOption D:Each liquid particle sat all sections have the same velocitiesOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption B:steady flowOption C:Flow of ideal fluidOption D:Non uniform flowOption A:Fluid is continuousOption A:Fluid is continuousOption A:Fluid is continuousOption A:Fluid is continuousOption B:Fluid is compressibleQ13.Existence of velocity potential implied thatOption C:Fluid is compressibleQ14.Coefficient of Discharge is equal toOption A:Coefficient of Discharge is equal to	Option B:	$2\mathbf{x} + \mathbf{y} = 0$
Option D: $2x - y = 0$ Q11.The flow in a pipe or channel is said to be non-uniform whenOption A:The liquid particles at different sections have different velocitiesOption B:The liquid particles at all sections have the same velocitiesOption C:The quantity of liquid flowing per second is constantOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption A:Uniform flowOption D:steady flowOption D:Flow of ideal fluidOption D:Non uniform flowQ13.Existence of velocity potential implied thatOption B:Fluid is continuousOption C:Fluid is continuousOption D:Fluid is idealOption D:Fluid is idealOption A:Fluid is idealOption A:Coefficient of Discharge is equal toOption A:Cy+ Cc	Option C:	$\mathbf{x} + 2\mathbf{y} = 0$
Q11. The flow in a pipe or channel is said to be non-uniform when Option A: The liquid particles at different sections have different velocities Option B: The liquid particles at all sections have the same velocities Option C: The quantity of liquid flowing per second is constant Option D: Each liquid particle has a definite path Q12. Streamlines, path lines and streak lines are virtually identical for Option A: Uniform flow Option D: steady flow Option D: Non uniform flow Option D: Non uniform flow Q13. Existence of velocity potential implied that Option A: Fluid is continuous Option B: Fluid is continuous Option C: Fluid is irrotational Option C: Fluid is compressible Q13. Existence of velocity potential implied that Option C: Fluid is ideal Option D: Fluid is ideal Option D: Fluid is ideal Option D: Fluid is compressible Q14. Coefficient of Discharge is equal to Option A: C _v + C _c	Option D:	2x - y = 0
Q11.The flow in a pipe or channel is said to be non-uniform whenOption A:The liquid particles at different sections have different velocitiesOption B:The liquid particles at all sections have the same velocitiesOption C:The quantity of liquid flowing per second is constantOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption B:steady flowOption C:Flow of ideal fluidOption D:Existence of velocity potential implied thatOption A:Fluid is continuousOption B:Fluid is compressibleQ13.Existence of velocity potential implied thatOption C:Fluid is compressibleQ14.Coefficient of Discharge is equal toOption A:Cy+ Cc		
Option A:The liquid particles at different sections have different velocitiesOption B:The liquid particles at all sections have the same velocitiesOption C:The quantity of liquid flowing per second is constantOption D:Each liquid particle has a definite path \sim \sim Q12.Streamlines, path lines and streak lines are virtually identical forOption A:Uniform flowOption B:steady flowOption C:Flow of ideal fluidOption D:Non uniform flowQ13.Existence of velocity potential implied thatOption A:Fluid is continuousOption B:Fluid is continuousOption D:Fluid is irrotationalOption D:Fluid is is idealOption D:Fluid is compressibleQ14.Coefficient of Discharge is equal toOption A:Cv + Cc	Q11.	The flow in a pipe or channel is said to be non-uniform when
Option B:The liquid particles at all sections have the same velocitiesOption C:The quantity of liquid flowing per second is constantOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption A:Uniform flowOption B:steady flowOption C:Flow of ideal fluidOption D:Non uniform flowQ13.Existence of velocity potential implied thatOption B:Fluid is continuousOption C:Fluid is continuousOption D:Fluid is irrotationalOption D:Fluid is idealOption D:Fluid is compressibleQ14.Coefficient of Discharge is equal toOption A:Cy + Cc	Option A:	The liquid particles at different sections have different velocities
Option C:The quantity of liquid flowing per second is constantOption D:Each liquid particle has a definite pathQ12.Streamlines, path lines and streak lines are virtually identical forOption A:Uniform flowOption B:steady flowOption C:Flow of ideal fluidOption D:Non uniform flowQ13.Existence of velocity potential implied thatOption B:Fluid is continuousOption C:Fluid is continuousOption D:Fluid is irrotationalOption D:Fluid is idealOption D:Fluid is compressibleQ14.Coefficient of Discharge is equal toOption A:Cy + Cc	Option B:	The liquid particles at all sections have the same velocities
Option D: Each liquid particle has a definite path Q12. Streamlines, path lines and streak lines are virtually identical for Option A: Uniform flow Option B: steady flow Option C: Flow of ideal fluid Option D: Non uniform flow Q13. Existence of velocity potential implied that Option B: Fluid is continuous Option C: Fluid is continuous Option D: Fluid is continuous Option D: Fluid is irrotational Option D: Fluid is compressible Q14. Coefficient of Discharge is equal to Option A: Coefficient of Discharge is equal to	Option C:	The quantity of liquid flowing per second is constant
Q12. Streamlines, path lines and streak lines are virtually identical for Option A: Uniform flow Option B: steady flow Option C: Flow of ideal fluid Option D: Non uniform flow Q13. Existence of velocity potential implied that Option A: Fluid is continuous Option B: Fluid is irrotational Option C: Fluid is ideal Option D: Fluid is compressible Q14. Coefficient of Discharge is equal to Option A: $C_v + C_c$	Option D:	Each liquid particle has a definite path
Q12.Streamlines, path lines and streak lines are virtually identical forOption A:Uniform flowOption B:steady flowOption C:Flow of ideal fluidOption D:Non uniform flowQ13.Existence of velocity potential implied thatOption A:Fluid is continuousOption B:Fluid is irrotationalOption C:Fluid is idealOption D:Fluid is ecompressibleQ14.Coefficient of Discharge is equal toOption A: $C_v + C_c$	-	
Option A:Uniform flowOption B:steady flowOption C:Flow of ideal fluidOption D:Non uniform flowQ13.Existence of velocity potential implied thatOption A:Fluid is continuousOption B:Fluid is continuousOption C:Fluid is irrotationalOption D:Fluid is compressibleQ14.Coefficient of Discharge is equal toOption A: $C_v + C_c$	Q12.	Streamlines, path lines and streak lines are virtually identical for
Option B:steady flowOption C:Flow of ideal fluidOption D:Non uniform flowQ13.Existence of velocity potential implied thatOption A:Fluid is continuousOption B:Fluid is irrotationalOption C:Fluid is idealOption D:Fluid is compressibleQ14.Coefficient of Discharge is equal toOption A: $C_v + C_c$	Option A:	Uniform flow
Option C: Flow of ideal fluid Option D: Non uniform flow Q13. Existence of velocity potential implied that Option A: Fluid is continuous Option B: Fluid is irrotational Option C: Fluid is ideal Option D: Fluid is compressible Q14. Coefficient of Discharge is equal to Option A: $C_v + C_c$	Option B:	steady flow
Option D: Non uniform flow Q13. Existence of velocity potential implied that Option A: Fluid is continuous Option B: Fluid is irrotational Option C: Fluid is ideal Option D: Fluid is compressible Q14. Coefficient of Discharge is equal to Option A: Cv+Cc	Option C:	Flow of ideal fluid
Q13. Existence of velocity potential implied that Option A: Fluid is continuous Option B: Fluid is irrotational Option C: Fluid is ideal Option D: Fluid is compressible Q14. Coefficient of Discharge is equal to Option A: $C_v + C_c$	Option D:	Non uniform flow
Q13. Existence of velocity potential implied that Option A: Fluid is continuous Option B: Fluid is irrotational Option C: Fluid is ideal Option D: Fluid is compressible Q14. Coefficient of Discharge is equal to Option A: $C_v + C_c$	•	
Option A: Fluid is continuous Option B: Fluid is irrotational Option C: Fluid is ideal Option D: Fluid is compressible Q14. Coefficient of Discharge is equal to Option A: $C_v + C_c$	Q13.	Existence of velocity potential implied that
Option B: Fluid is irrotational Option C: Fluid is ideal Option D: Fluid is compressible Q14. Coefficient of Discharge is equal to Option A: $C_v + C_c$	Option A:	Fluid is continuous
Option C: Fluid is ideal Option D: Fluid is compressible Q14. Coefficient of Discharge is equal to Option A: C _v + C _c	Option B:	Fluid is irrotational
Option D: Fluid is compressible Q14. Coefficient of Discharge is equal to Option A: $C_v + C_c$	Option C:	Fluid is ideal
Q14. Coefficient of Discharge is equal to Option A: $C_v + C_c$	Option D:	Fluid is compressible
Q14.Coefficient of Discharge is equal toOption A: $C_v + C_c$		
Option A: $C_v + C_c$	Q14.	Coefficient of Discharge is equal to
	Option A:	$C_v + C_c$

Option B:	C_v/C_c
Option C:	$C_v - C_c$
Option D:	$C_v * C_c$
Q15.	The pitot tube is used to measure
Option A:	Velocity at stagnation point
Option B:	Stagnation pressure
Option C:	Static pressure
Option D:	Dynamic pressure
Q16.	Find the discharge in m^3/s through a rectangular orifice 3 m wide and 2 m deep fitted to a water tank. The water level in the tank is 4 m above the top edge of the orifice. Thake $C_d=0.62$
Option A:	46.76
Option B:	36.76
Option C:	56.76
Option D:	26.76
•	
Q17.	A water flows through a pipe at a velocity 2 m/s. The pressure gauge reading is 2 bar. The datum head is given to be 2 m. Find the piezometric head. (Assume all Bernoulli's assumptions, Density of water = 1000 kg/m3 , g = 9.8 m/s2).
Option A:	12.4 m
Option B:	32.4 m
Option C:	22.4 m
Option D:	42.4 m
Q18.	Which of the following equations is a result of momentum conservation for inviscid
_	steady flows?
Option A:	Bernoulli's equation
Option B:	Navier-Stokes equation
Option C:	First law of thermodynamics
Option D:	Euler's equation
.	
Q19.	During the opening of a valve in a pipe line, the flow is
Option A:	Unsteady
Option B:	Steady
Option C:	Laminar
Option D:	Uniform
Q20.	A flow in which each particle has a definite path and their oaths do not cross each other, is called
Option A:	Steady flow
Option B:	Streamline flow
Option C:	Uniform flow
Option D:	Turbulent flow
Q21.	What is the shape of Cipolletti weir?
Ontion A.	Rectangular

Option B:	Circular
Option C:	Trapezoidal
Option D:	stepped
Q22.	An Ogee weir 5 m long had a head of 40 cm of water. If $CD = 0.61$, find the
	discharge over the weir.
Option A:	$2.9 \text{ m}^{3}/\text{s}$
Option B:	$3.1 \text{ m}^{3}/\text{s}$
Option C:	$3.3 \text{ m}^{3}/\text{s}$
Option D:	$2.3 \text{ m}^{3}/\text{s}$
Q23.	What is not the way of classifying weir based on the emerging nappe?
Option A:	Weir contraction at the beginning
Option B:	Weir with absence of end contraction
Option C:	Weir with end contraction
Option D:	Weir without end contraction
Q24.	When is orifice called 'large orifice'?
Option A:	If the head of liquid is less than 2.5 times the depth of orifice
Option B:	If the head of liquid is less than 5 times the depth of orifice
Option C:	If the head of liquid is less Hence, 4 times the depth of orifice
Option D:	If the head of liquid is less than 1.5 times the depth of orifice
Q25.	The flow of fluid along curvilinear or curved path is known as
Option A:	Curvilinear Flow
Option B:	Circular Flow
Option C:	Vortex Flow
Option D:	Sink Flow