University of Mumbai Examination 2020 under cluster 5 (APSIT)

Program : BE Electronics and Telecommunication Engineering Curriculum Scheme: Rev 12 (CBSGS) Examination: Second Year Semester IV Course Code: ETC 405 and Course Name: Signals and Systems

Time: 1 hour

Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	The type of systems which are characterized by input and the output quantized at
	certain levels are called as
Option A:	analog
Option B:	Discrete
Option C:	continuous
Option D:	Digital
Q2.	The type of systems which are characterized by input and the output capable of taking any value in a particular set of values are called as
Option A:	Analog
Option R:	Discrete
Option C:	Digital
Option D:	Continuous
Option D.	
03	A time invariant system is a system whose output
Option A:	increases with a delay in input
Option B:	decreases with a delay in input
Option C:	remains same with a delay in input
Option D:	vanishes with a delay in input
option 21	
0.1	
Q4.	A system is said to be defined as non causal, when
Q4. Option A:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time
Q4. Option A: Option B:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present does not depend on the factor of time at all
Q4. Option A: Option B: Option C:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present does not depend on the factor of time at all the output at the present depends on the input at the current time
Q4. Option A: Option B: Option C: Option D:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present does not depend on the factor of time at all the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future
Q4. Option A: Option B: Option C: Option D:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present does not depend on the factor of time at all the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future
Q4. Option A: Option B: Option C: Option D: Q5.	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present does not depend on the factor of time at all the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future If x (-t) = -x (t) then the signal is said to be
Q4. Option A: Option B: Option C: Option D: Q5. Option A:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present does not depend on the factor of time at all the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future If x (-t) = -x (t) then the signal is said to be Even signal
Q4. Option A: Option B: Option C: Option D: Q5. Option A: Option B:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present does not depend on the factor of time at all the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future If x (-t) = -x (t) then the signal is said to be Even signal Odd signal
Q4. Option A: Option B: Option C: Option D: Q5. Option A: Option B: Option C:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present does not depend on the factor of time at all the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future If x (-t) = -x (t) then the signal is said to be Even signal Odd signal Periodic signal
Q4. Option A: Option B: Option C: Option D: Q5. Option A: Option B: Option C: Option D:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present does not depend on the factor of time at all the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future If x (-t) = -x (t) then the signal is said to be Even signal Odd signal Periodic signal Non periodic signal
Q4. Option A: Option B: Option C: Option D: Q5. Option A: Option B: Option C: Option D:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present does not depend on the factor of time at all the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future If x (-t) = -x (t) then the signal is said to be Even signal Odd signal Periodic signal Non periodic signal
Q4. Option A: Option B: Option C: Option D: Q5. Option A: Option B: Option C: Option D: Q6.	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future If x (-t) = -x (t) then the signal is said to be Even signal Odd signal Periodic signal Non periodic signal When x(t) is said to be non periodic signal?
Q4. Option A: Option B: Option C: Option D: Q5. Option A: Option B: Option C: Option D: Q6. Option A:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present does not depend on the factor of time at all the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future If x (-t) = -x (t) then the signal is said to be Even signal Odd signal Periodic signal Non periodic signal When x(t) is said to be non periodic signal? If the equation x (t) = x (t + T) is satisfied for all values of T
Q4. Option A: Option B: Option C: Option D: Q5. Option A: Option B: Option C: Option D: Q6. Option A: Option B:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present depends on the input at the current time the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future If x (-t) = -x (t) then the signal is said to be Even signal Odd signal Periodic signal Non periodic signal When x(t) is said to be non periodic signal? If the equation x (t) = x (t + T) is satisfied for all values of T If the equation x (t) = x (t + T) is satisfied for only one value of T
Q4. Option A: Option B: Option C: Option D: Q5. Option A: Option B: Option C: Q6. Option A: Option B: Option B: Option C:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present does not depend on the factor of time at all the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future If x (-t) = -x (t) then the signal is said to be Even signal Odd signal Periodic signal Non periodic signal When x(t) is said to be non periodic signal? If the equation x (t) = x (t + T) is satisfied for all values of T If the equation x (t) = x (t + T) is satisfied for no value of T If the equation x (t) = x (t + T) is satisfied for no values of T
Q4. Option A: Option B: Option C: Option D: Q5. Option A: Option B: Option C: Option A: Option A: Option A: Option B: Option B: Option C: Option D:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present depends on the input at the current time the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future If x (-t) = -x (t) then the signal is said to be Even signal Odd signal Periodic signal Non periodic signal When x(t) is said to be non periodic signal? If the equation x (t) = x (t + T) is satisfied for all values of T If the equation x (t) = x (t + T) is satisfied for no value of T If the equation x (t) = x (t + T) is satisfied for no values of T If the equation x (t) = x (t + T) is satisfied for no values of T If the equation x (t) = x (t + T) is satisfied for no values of T If the equation x (t) = x (t + T) is satisfied for no values of T If the equation x (t) = x (t + T) is satisfied for no values of T
Q4. Option A: Option B: Option C: Option D: Q5. Option A: Option B: Option C: Option A: Option A: Option B: Option C: Option C: Option C:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present does not depend on the factor of time at all the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future If x (-t) = -x (t) then the signal is said to be Even signal Odd signal Periodic signal Non periodic signal When x(t) is said to be non periodic signal? If the equation x (t) = x (t + T) is satisfied for all values of T If the equation x (t) = x (t + T) is satisfied for no values of T If the equation x (t) = x (t + T) is satisfied for no values of T If the equation x (t) = x (t + T) is satisfied for no values of T
Q4. Option A: Option B: Option C: Option D: Q5. Option A: Option B: Option C: Option D: Q6. Option A: Option B: Option B: Option C: Option C: Option D:	A system is said to be defined as non causal, when the output at the present depends on the input at an earlier time the output at the present depends on the input at the current time the output at the present depends on the input at the current time the output at the present depends on the input at a time instant in the future If x (-t) = -x (t) then the signal is said to be Even signal Odd signal Periodic signal Non periodic signal When x(t) is said to be non periodic signal? If the equation x (t) = x (t + T) is satisfied for all values of T If the equation x (t) = x (t + T) is satisfied for no value of T If the equation x (t) = x (t + T) is satisfied for no values of T If the equation x (t) = x (t + T) is satisfied for no values of T If the equation x (t) = x (t + T) is satisfied for no values of T If the equation x (t) = x (t + T) is satisfied for no values of T If the equation x (t) = x (t + T) is satisfied for no values of T If the equation x (t) = x (t + T) is satisfied for no values of T If the equation x (t) = x (t + T) is satisfied for no values of T If the equation x (t) = x (t + T) is satisfied for only odd values of T If the equation x (t) = x (t + T) is satisfied for only odd values of T If the equation x (t) = x (t + T) is satisfied for only odd values of T

University of Mumbai Examination 2020 under cluster 5 (APSIT)

Option B:	Expanded signal
Option C:	Shifted signal
Option D:	Amplitude scaled signal by a factor of 2
Q8.	Check whether x $[n] = 7 \sin (6\pi n)$ is periodic and if it is period calculate its
-	fundamental period?
Option A:	Periodic with fundamental period 6π
Option B:	Periodic with fundamental period 3
Option C:	Periodic with fundamental period 1
Option D:	Non periodic
Q9.	y(t) = sin(x(t-1)): Comment on its memory aspects.
Option A:	Having memory
Option B:	Needn't have memory
Option C:	Memoryless system
Option D:	Time invariant system
Q10.	Which of the following systems is stable?
Option A:	$\mathbf{y}(\mathbf{t}) = \log(\mathbf{x}(\mathbf{t}))$
Option B:	$\mathbf{y}(\mathbf{t}) = \sin(\mathbf{x}(\mathbf{t}))$
Option C:	$\mathbf{y}(\mathbf{t}) = \exp(\mathbf{x}(\mathbf{t}))$
Option D:	$\mathbf{y}(\mathbf{t}) = \mathbf{t} \ \mathbf{x}(\mathbf{t}) + 1$
Q11.	The signal x (t) = $e^{j(2t+\pi/4)}$ is
Option A:	Energy signal with $E\infty = 2$
Option B:	Power signal with $P\infty = 2$
Option C:	Power signal with $P\infty = 1$
Option D:	Energy signal with $E\infty = 1$
Q12.	The range for unit step function for $u(t - a)$, is
Option A:	t < a
Option B:	t≤a
Option C:	t = a
Option D:	t≥a
Q13.	Find the convolution sum of sequences $x_1[n] = (1, 2, 3)$ and $x_2[n] = (2, 1, 4)$.
Option A:	$\{2, 5, 12, 11, 12\}$
Option B:	{2, 12, 5, 11, 12}
Option C:	$\{2, 11, 5, 12, 12\}$
Option D:	{-2, 5, -12, 11, 12}
0.1.4	
Q14.	The impulse response h (t) of an LTI system is given by e^{-2t} .u(t). What is the step
	response? $r(t) = 12(1 - r^{2}t) r(t)$
Option A:	$y(t) = \frac{1}{2} (1 - e^{-t}) u(t)$
Option B:	$y(t) = \frac{1}{2} \frac{1}{1 - e^{-t}}$
Option C:	$y(t) = (1 - e^{-t}) u(t)$
Option D:	y(t) = 1/2 (e ⁻¹) u (t)

University of Mumbai

Examination 2020 under cluster 5 (APSIT)

Q15.	Convolve the signals $e^{-2t} u(t)$, $e^{-3t} u(t)$. Determine the output?
Option A:	$y(t) = (e^{-2t} - e^{-3t})u(t)$
Option B:	$y(t) = (e^{-2t} - e^{-3t})$
Option C:	$y(t) = (e^{-3t} - e^{-2t})u(t)$
Option D:	$y(t) = (e^{-t} - e^{-3t})u(t)$
Q16.	Determine the Nyquist rate of the signal $x(t) = 1 + \cos 2000\pi t + \sin 4000\pi t$.
Option A:	2000 Hz
Option B:	4000 Hz
Option C:	1 Hz
Option D:	6000 Hz
Q17.	Which of the following is the process of 'aliasing'?
Option A:	Peaks overlapping
Option B:	Phase overlapping
Option C:	Amplitude overlapping
Option D:	Spectral overlapping
Q18.	Find the Fourier transform of $x(t) = f(t-2) + f(t+2)$.
Option A:	$2F(\omega)\cos 2\omega$
Option B:	$F(\omega)\cos 2\omega$
Option C:	$2F(\omega)\sin 2\omega$
Option D:	$F(\omega)\sin 2\omega$
010	For a stable system which of the following is correct?
Q19.	For a stable system which of the following is correct?
Option R:	$ Z \leq 1$ z = 1
Option C:	Z - 1 z > 1
Option C.	
Option D:	$ \mathbf{z} \neq 1$
Option D:	$ \mathbf{z} \neq 1$
Option D:	$ z \neq 1$ Given $x(t)=e^{-t}u(t)$. Find the inverse Laplace transform of $e^{-3s} X(2s)$.
Option D: Q20. Option A:	$ z \neq 1$ Given x(t)=e ^{-t} u(t). Find the inverse Laplace transform of e ^{-3s} X(2s). $1/2 e^{-(t-3)/2} u(t+3)$
Option D: Q20. Option A: Option B:	$ z \neq 1$ Given x(t)=e ^{-t} u(t). Find the inverse Laplace transform of e ^{-3s} X(2s). $\frac{1/2 e^{-(t-3)/2} u(t+3)}{1/2 e^{-(t-3)/2} u(t-3)}$
Option D: Q20. Option A: Option B: Option C:	$\begin{aligned} z \neq 1 \\ \hline \\ Given x(t) = e^{-t} u(t). Find the inverse Laplace transform of e^{-3s} X(2s). \\ \hline \\ \frac{1/2 e^{-(t-3)/2} u(t+3)}{1/2 e^{-(t-3)/2} u(t-3)} \\ \hline \\ \hline \\ \frac{1/2 e^{(t-3)/2} u(t-3)}{1/2 e^{(t-3)/2} u(t-3)} \end{aligned}$
Option D: Q20. Option A: Option B: Option C: Option D:	$\begin{aligned} z \neq 1 \\ \hline z \neq 1 \\ \hline \\ Given x(t) = e^{-t} u(t). Find the inverse Laplace transform of e^{-3s} X(2s). \\ \hline \\ 1/2 e^{-(t-3)/2} u(t+3) \\ \hline \\ 1/2 e^{(t-3)/2} u(t-3) \\ \hline \\ 1/2 e^{(t-3)/2} u(t-3) \\ \hline \\ 1/2 e^{(t-3)/2} u(t+3) \end{aligned}$
Option D: Q20. Option A: Option B: Option C: Option D:	$\begin{aligned} z &\neq 1 \\ \hline z &\neq 1 \\ \hline \\ Given x(t) = e^{-t} u(t). Find the inverse Laplace transform of e^{-3s} X(2s). \\ \hline \\ 1/2 e^{-(t-3)/2} u(t+3) \\ \hline \\ 1/2 e^{(t-3)/2} u(t-3) \\ \hline \\ 1/2 e^{(t-3)/2} u(t-3) \\ \hline \\ 1/2 e^{(t-3)/2} u(t+3) \\ \hline \end{aligned}$
Option D: Q20. Option A: Option B: Option C: Option D: Q21.	$\begin{array}{l} z \neq 1 \\ \hline z \neq 1 \\ \hline \\ \hline \\ Given x(t) = e^{-t} u(t). Find the inverse Laplace transform of e^{-3s} X(2s). \\ \hline \\ 1/2 \ e^{-(t-3)/2} \ u(t+3) \\ \hline \\ 1/2 \ e^{(t-3)/2} \ u(t-3) \\ \hline \\ 1/2 \ e^{(t-3)/2} \ u(t+3) \\ \hline \\ $
Option D: Q20. Option A: Option B: Option C: Option D: Q21. Option A:	$\begin{array}{l} z \neq 1 \\ \hline z \neq 1 \\ \hline \\ \hline \\ Given x(t) = e^{-t} u(t). Find the inverse Laplace transform of e^{-3s} X(2s). \\ \hline \\ 1/2 \ e^{-(t-3)/2} \ u(t+3) \\ \hline \\ 1/2 \ e^{(t-3)/2} \ u(t-3) \\ \hline \\ 1/2 \ e^{(t-3)/2} \ u(t-3) \\ \hline \\ 1/2 \ e^{(t-3)/2} \ u(t+3) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ The inverse Z-transform of z/(z+1)^2 is \ \\ \hline \\ (-1)^{n+1} \\ \hline \end{array}$
Option D: Q20. Option A: Option B: Option C: Option D: Q21. Option A: Option B:	$\begin{array}{c} z \neq 1 \\ \hline z \neq 1 \\ \hline \\$
Option D: Q20. Option A: Option B: Option C: Option D: Q21. Option A: Option B: Option C:	$\begin{array}{l} z \neq 1 \\ \hline z \neq 1 \\ \hline \\ \hline \\ Given x(t) = e^{-t} u(t). Find the inverse Laplace transform of e^{-3s} X(2s). \\ \hline \\ 1/2 e^{-(t-3)/2} u(t+3) \\ \hline \\ 1/2 e^{(t-3)/2} u(t-3) \\ \hline \\ 1/2 e^{(t-3)/2} u(t-3) \\ \hline \\ 1/2 e^{(t-3)/2} u(t+3) \\ \hline \\ $
Option D: Q20. Option A: Option B: Option C: Option D: Q21. Option A: Option B: Option C: Option D:	$\begin{array}{l} z \neq 1 \\ \hline z \neq 1 \\ \hline \\ \hline \\ Given x(t) = e^{-t} u(t). Find the inverse Laplace transform of e^{-3s} X(2s). \\ \hline \\ 1/2 e^{-(t-3)/2} u(t+3) \\ \hline \\ 1/2 e^{(t-3)/2} u(t-3) \\ \hline \\ 1/2 e^{(t-3)/2} u(t+3) \\ \hline \\ $
Option D: Q20. Option A: Option B: Option C: Option D: Q21. Option A: Option B: Option C: Option C: Option D:	$\begin{array}{l} z \neq 1 \\ \hline z \neq 1 \\ \hline \\ \hline \\ Given x(t) = e^{-t} u(t). Find the inverse Laplace transform of e^{-3s} X(2s). \\ \hline \\ 1/2 \ e^{(t-3)/2} \ u(t+3) \\ \hline \\ 1/2 \ e^{(t-3)/2} \ u(t-3) \\ \hline \\ 1/2 \ e^{(t-3)/2} \ u(t+3) \\ \hline \\ $
Option D: Q20. Option A: Option B: Option C: Option D: Q21. Option A: Option A: Option B: Option C: Option D: Q22.	$\begin{array}{c} z \neq 1 \\ \hline z \neq 1 \\ \hline \\$
Option D: Q20. Option A: Option B: Option C: Option D: Q21. Option A: Option B: Option C: Option C: Option D: Q22. Option A:	$\begin{aligned} z \neq 1 \\ \hline z \neq 1 \\ \hline \\$
Option D: Q20. Option A: Option B: Option C: Option D: Q21. Option A: Option B: Option C: Option D: Q22. Option A: Option B:	$\begin{aligned} z \neq 1 \\ \hline z \neq 1 \\ \hline \\$
Option D: Q20. Option A: Option B: Option C: Option D: Q21. Option A: Option B: Option C: Option D: Q22. Option A: Option A: Option B: Option C:	$ z \neq 1$ Given x(t)=e ^{-t} u(t). Find the inverse Laplace transform of e ^{-3s} X(2s). $1/2 e^{-(t-3)/2} u(t+3)$ $1/2 e^{-(t-3)/2} u(t-3)$ $1/2 e^{(t-3)/2} u(t-3)$ $1/2 e^{(t-3)/2} u(t+3)$ The inverse Z-transform of $z/(z+1)^2$ is (-1)^{n+1} $(-1)^{n+1} n$ $(-1)^{n+1} n$ Where does the gibbs phenomenon occur? Gibbs phenomenon occurs near points of discontinuity Gibbs phenomenon occurs only near points of discontinuity Gibbs phenomenon occurs only ahead of points of discontinuity
Option D: Q20. Option A: Option B: Option C: Option D: Q21. Option A: Option B: Option C: Option D: Q22. Option A: Option B: Option B: Option C: Option C: Option D:	$ z \neq 1$ Given x(t)=e ^{-t} u(t). Find the inverse Laplace transform of e ^{-3s} X(2s). $1/2 e^{-(t-3)/2} u(t+3)$ $1/2 e^{-(t-3)/2} u(t-3)$ $1/2 e^{(t-3)/2} u(t-3)$ $1/2 e^{(t-3)/2} u(t+3)$ The inverse Z-transform of $z/(z+1)^2$ is

University of Mumbai

Examination 2020 under cluster 5 (APSIT)

Q23.	The Fourier transform of $u(t)$ is $B(j\omega)$ and the Laplace transform of $u(t)$ is $A(s)$.
	Which of the following is correct?
Option A:	$B(j\omega) = A(s)$
Option B:	$A(s) = 1/s$ but $B(j\omega) \neq 1/j\omega$
Option C:	$A(s) \neq 1/s$ but $B(j\omega) \neq 1/j\omega$
Option D:	$A(s) \neq 1/s$ but $B(j\omega) = 1/j\omega$
Q24.	For which of the following a Fourier series cannot be defined?
Option A:	3 sin (25t)
Option B:	$4\cos(20t+3) + 2\sin(710t)$
Option C:	$\exp(- \mathbf{t})\sin(25\mathbf{t})$
Option D:	1
Q25.	How is time shifting represented in case of periodic signal?
Option A:	If $x(t)$ is shifted to t_0 , Xn is shifted to t_0
Option B:	$x(t-t_0), Yn = Xn e^{-njwt}$
Option C:	$Xn = x(t-t_0), Yn = Xn e^{-njwt_0}$
Option D:	$Xn = x(-t_0), Yn = Xn e^{-njwt}$