Program: BE Information Technology Engineering

Curriculum Scheme: R16-CBCGS

Examination: Second Year Semester IV

Course Code: SEITC405 and Course Name: Automata Theory

Time: 1hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Transition function maps.
Option A:	Σ * Q -> Σ
Option B:	Q * Q -> Σ
Option C:	Σ * Σ -> Q
Option D:	Q * Σ -> Q
Q2.	Number of states require to accept string ends with 10.
Option A:	3
Option B:	2
Option C:	1
Option D:	Can't be represented
Q3.	Languages of a automata is
Option A:	If it is accepted by automata
Option B:	If it halts
Option C:	If automata touch final state in its life time
Option D:	All language are language of automata
Q4.	Finite automata requires minimum number of stacks
Option A:	1
Option B:	0
Option C:	2
Option D:	3
Q5.	Regular expression for all strings starts with ab and ends with bba is.
Option A:	aba*b*bba
Option B:	ab(ab)*bba
Option C:	ab(a+b)*bba
Option D:	ab(abb)*bba
Q6.	The basic limitation of finite automata is that
Option A:	It can't remember arbitrary large amount of information.
Option B:	It sometimes recognizes grammar that are not regular.

Option C:	It sometimes fails to recognize regular grammar
Option D:	It can sometime recognize ambiguous grammar.
Option D.	
Q7.	A DPDA is a PDA in which:
Option A:	No state p has two outgoing transitions
Option B:	More than one state can have two or more outgoing transitions
Option C:	Atleast one state has more than one transitions
Option D:	Has more expressive power than a NPDA
Option D.	
Q8.	If the PDA does not stop on an accepting state and the stack is not empty, the
_	string is:
Option A:	rejected
Option B:	goes into loop forever
Option C:	Accepted
Option D:	Partially accepted
Option D.	
Q9.	Which of the following assertion is false?
Option A:	If L is a language accepted by PDA1 by final state, there exist a PDA2 that
option / a	accepts L by empty stack i.e. L=L(PDA1)=L(PDA2)
Option B:	If L is a CFL then there exists a push down automata P accepting CF; ; by empty
option b.	stack i.e. L=M(P)
Option C:	Let L is a language accepted by PDA1 then there exist a CFG X such that
option e.	L(X)=M(P)
Option D:	The expressive power of NPDA is same as DPDA
Q10.	A push down automaton employs data structure.
Option A:	Queue
Option B:	Linked List
Option C:	Hash Table
Option D:	Stack
•	
Q11.	Push down automata accepts languages.
Option A:	Туре 3
Option B:	Туре 2
Option C:	Туре 1
Option D:	Туре 0
•	
Q12.	S -> aSa bSb a b; The language generated by the above grammar over the
-	alphabet {a,b} is the set of
Option A:	All palindromes
Option B:	All odd length palindromes.
Option C:	Strings that begin and end with the same symbol
Option D:	All even length palindromes
Q13.	Consider the CFG with {S,A,B) as the non-terminal alphabet, {a,b) as the terminal
	alphabet, S as the start symbol and the following set of production rules

	S> aB S> bA
	B>b A>a
	B> bS A> aS
	B> aBB A> bAA
	Which of the following strings is generated by the grammar?
Option A:	aaaabb
Option B:	aabbbb
Option C:	aabbab
Option D:	abbbba
Q14.	Context free languages are closed under
Option A:	Union, Intersection
Option B:	Union, Kleene closure
Option C:	Intersection, Complement
Option D:	Complement, Kleene closure
Q15.	Consider the following statements about the context free grammar
Q15.	$G = \{S \rightarrow SS, S \rightarrow ab, S \rightarrow ba, S \rightarrow E\}$
	I. G is ambiguous
	II. G produces all strings with equal number of a's and b's
	III. G can be accepted by a deterministic PDA.
	Which combination below expresses all the true statements about G?
Option A:	I and III only
Option B:	I only
Option C:	II and III only
Option D:	I,II and III
option Di	
Q16.	The language recognized by Turing machine is:
Option A:	Context free language
Option B:	Context sensitive language
Option C:	Recursively enumerable language
Option D:	Regular language
Q17.	Turing Machine can update symbols on its tape, whereas the FA cannot update
	symbols on tape.
Option A:	True
Option B:	False
Option C:	Can't say
Option D:	May be
019	$\int \int $
Q18.	Let $L = \{W \in (0, 1)^* \mid W \text{ has even number of } 1s\}$, i.e., L is the set of all bit strings with even number of 1's. Which one of the regular expressions below represents
	with even number of 1's. Which one of the regular expressions below represents L?
Option A:	(0* 10* 1)*
	0 * (10* 10*)*
Option B:	

Option C:	0 * (10 *1)* 0*
Option D:	0 * 1(10 * 1) * 10 *
option D.	
Q19.	Which of the following is true?.
Option A:	Every subset of a regular set is regular
Option B:	Every finite subset of non-regular set is regular
Option C:	The union of two non regular set is not regular
Option D:	Infinite union of finite set is regular
option D.	
Q20.	Halting state of Turing machine are:
Option A:	Start and stop
Option B:	Accept and reject
Option C:	Start and reject
Option D:	Reject and allow
option Di	
Q21.	Which of the following is true for the language: {a ^p p is a prime}
Option A:	It is regular but not context-free
Option B:	It is neither regular nor context-free, but accepted by a Turing machine
Option C:	It is not accepted by a Turing Machine
Option D:	It is context-free but not regular
•	
Q22.	Which of the following conversion is not possible (algorithmically)?
Option A:	Regular grammar to context-free grammar
Option B:	Non-deterministic pushdown automata to deterministic pushdown automata
Option C:	Non-deterministic finite state automata to deterministic finite state automata
Option D:	Non deterministic Turing machine to deterministic Turing machine
Q23.	A grammar G = (V, Σ , S, P) in which V represents
Option A:	Set of Nonterminal
Option B:	Start symbol
Option C:	Set of terminals
Option D:	Production
Q24.	The minimum number of productions required to produce a language consisting
	of palindrome strings (even and odd) over ∑={a,b} is
Option A:	3
Option B:	5
Option C:	7
Option D:	2
025	The language of (a, b) ends in a
Q25.	The language of {a, b} ends in a
Option A:	S→aS bS
Option B:	$S \rightarrow aS \mid bS \mid b$
Option C:	$S \rightarrow aS \mid bS \mid S$
Option D:	S→aS bS a