Program: BE Information Technology Engineering
 Curriculum Scheme: R16-CBCGS
 Examination: Second Year Semester IV
 Course Code: SEITC405 and Course Name: Automata Theory

Time: 1hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Transition function maps.
Option A:	$\Sigma^{*} \mathrm{Q}->\Sigma$
Option B:	$\mathrm{Q}^{*} \mathrm{Q}->\Sigma$
Option C:	$\Sigma^{*} \Sigma->\mathrm{Q}$
Option $\mathrm{D}:$	$\mathrm{Q}^{*} \Sigma->\mathrm{Q}$
Q2.	Number of states require to accept string ends with 10.
Option A:	3
Option B:	2
Option C:	1
Option D:	Can't be represented
Q3.	Languages of a automata is
Option A:	If it is accepted by automata
Option B:	If it halts
Option C:	If automata touch final state in its life time
Option D:	All language are language of automata
Q4.	Finite automata requires minimum
Option A:	1
Option B:	0
Option C:	2
Option D:	3
Q5.	Regular expression for all strings starts with ab and ends with bba is.
Option A:	aba*b*bba
Option B:	ab(ab)*bba
Option C:	ab(a+b)*bba
Option D:	ab(abb)*bba
Q6.	The basic limitation of finite automata is that
Option A:	It can't remember arbitrary large amount of information.
Option B:	It sometimes recognizes grammar that are not regular.

Option C:	It sometimes fails to recognize regular grammar
Option D:	It can sometime recognize ambiguous grammar.
Q7.	A DPDA is a PDA in which:
Option A:	No state p has two outgoing transitions
Option B:	More than one state can have two or more outgoing transitions
Option C:	Atleast one state has more than one transitions
Option D:	Has more expressive power than a NPDA
Q8.	If the PDA does not stop on an accepting state and the stack is not empty, the string is:
Option A:	rejected
Option B:	goes into loop forever
Option C:	Accepted
Option D:	Partially accepted
Q9.	Which of the following assertion is false?
Option A:	If L is a language accepted by PDA1 by final state, there exist a PDA2 that accepts L by empty stack i.e. L=L(PDA1)=L(PDA2)
Option B:	If L is a CFL then there exists a push down automata P accepting CF; ; by empty stack i.e. $L=M(P)$
Option C:	Let L is a language accepted by PDA1 then there exist a CFG X such that $\mathrm{L}(\mathrm{X})=\mathrm{M}(\mathrm{P})$
Option D:	The expressive power of NPDA is same as DPDA
Q10.	A push down automaton employs ___ data structure.
Option A:	Queue
Option B:	Linked List
Option C:	Hash Table
Option D:	Stack
Q11.	Push down automata accepts ___ languages.
Option A:	Type 3
Option B:	Type 2
Option C:	Type 1
Option D:	Type 0
Q12.	S -> $\mathrm{aSa}\|\mathrm{bSb}\| \mathrm{a} \mid \mathrm{b}$; The language generated by the above grammar over the alphabet $\{\mathrm{a}, \mathrm{b}\}$ is the set of
Option A:	All palindromes
Option B:	All odd length palindromes.
Option C:	Strings that begin and end with the same symbol
Option D:	All even length palindromes
Q13.	Consider the CFG with $\{\mathrm{S}, \mathrm{A}, \mathrm{B})$ as the non-terminal alphabet, $\{\mathrm{a}, \mathrm{b})$ as the terminal alphabet, S as the start symbol and the following set of production rules

	$\begin{array}{lc} \hline \text { S --> aB } & S \text {--> bA } \\ B \text {--> b } & \text { A --> a } \\ B \text { B --> bS } & \text { A --> aS } \\ \text { B --> aBB } & \text { A --> bAA } \end{array}$ Which of the following strings is generated by the grammar?
Option A:	aaaabb
Option B:	aabbbb
Option C:	aabbab
Option D:	abbbba
Q14.	Context free languages are closed under
Option A:	Union, Intersection
Option B:	Union, Kleene closure
Option C:	Intersection, Complement
Option D:	Complement, Kleene closure
Q15.	Consider the following statements about the context free grammar $\mathrm{G}=\{\mathrm{S} \rightarrow \mathrm{SS}, \mathrm{~S} \rightarrow \mathrm{ab}, \mathrm{~S} \rightarrow \mathrm{ba}, \mathrm{~S} \rightarrow \mathrm{E}\}$ I. G is ambiguous II. G produces all strings with equal number of a's and b's III. G can be accepted by a deterministic PDA. Which combination below expresses all the true statements about G ?
Option A:	I and III only
Option B:	I only
Option C:	II and III only
Option D:	I, II and III
Q16.	The language recognized by Turing machine is:
Option A:	Context free language
Option B:	Context sensitive language
Option C:	Recursively enumerable language
Option D:	Regular language
Q17.	Turing Machine can update symbols on its tape, whereas the FA cannot update symbols on tape.
Option A:	True
Option B:	False
Option C:	Can't say
Option D:	May be
Q18.	Let $L=\{W \in(0,1) * \mid W$ has even number of 1s\}, i.e., L is the set of all bit strings with even number of 1's. Which one of the regular expressions below represents L?
Option A:	(0* 10* 1)*
Option B:	0 * (10* 10*)*

Option C:	0* (10 *1)* 0*
Option D:	0*1(10 * 1) * 10 *
Q19.	Which of the following is true?.
Option A:	Every subset of a regular set is regular
Option B:	Every finite subset of non-regular set is regular
Option C:	The union of two non regular set is not regular
Option D:	Infinite union of finite set is regular
Q20.	Halting state of Turing machine are:
Option A:	Start and stop
Option B:	Accept and reject
Option C:	Start and reject
Option D:	Reject and allow
Q21.	Which of the following is true for the language: $\left\{\mathrm{a}^{\mathrm{p}} \mid \mathrm{p}\right.$ is a prime $\}$
Option A:	It is regular but not context-free
Option B:	It is neither regular nor context-free, but accepted by a Turing machine
Option C:	It is not accepted by a Turing Machine
Option D:	It is context-free but not regular
Q22.	Which of the following conversion is not possible (algorithmically)?
Option A:	Regular grammar to context-free grammar
Option B:	Non-deterministic pushdown automata to deterministic pushdown automata
Option C:	Non-deterministic finite state automata to deterministic finite state automata
Option D:	Non deterministic Turing machine to deterministic Turing machine
Q23.	A grammar $\mathrm{G}=(\mathrm{V}, \Sigma, \mathrm{S}, \mathrm{P})$ in which V represents
Option A:	Set of Nonterminal
Option B:	Start symbol
Option C:	Set of terminals
Option D:	Production
Q24.	The minimum number of productions required to produce a language consisting of palindrome strings (even and odd) over $\sum=\{a, b\}$ is
Option A:	3
Option B:	5
Option C:	7
Option D:	2
Q25.	The language of $\{\mathrm{a}, \mathrm{b}\}$ ends in a
Option A:	$\mathrm{S} \rightarrow \mathrm{aS} \mid \mathrm{bS}$
Option B:	$\mathrm{S} \rightarrow \mathrm{aS} \mid \mathrm{bS} \mathrm{\mid b}$
Option C:	$\mathrm{S} \rightarrow \mathrm{aS}\|\mathrm{bS}\| \mathrm{S}$
Option D:	$\mathrm{S} \rightarrow \mathrm{aS}\|\mathrm{bS}\| \mathrm{a}$

