University of Mumbai Examination 2020 under cluster____(APSIT) Program: <u>CIVIL</u> Engineering Curriculum Scheme: Rev2016 Examination: Second Year Semester III Course Code: <u>CE – C305</u> and Course Name: <u>Fluid Mechanics - I</u>

Time: 1 hour

Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	The specific volume of a liquid is the reciprocal of
Option A:	Weight density
Option B:	Mass density
Option C:	Specific weight
Option D:	Specific volume
Q2.	Two fluids 1 and 2 have mass densities of p1 and p2 respectively. If $p1 > p2$, which one of the following expressions will represent the relation between their specific volumes v1 and v2?
Option A:	v1 > v2
Option B:	v1 < v2
Option C:	v1 = v2
Option D:	Cannot be determined due to insufficient information
Q3.	A beaker is filled with a liquid up to the mark of one litre and weighed. The weight of the liquid is found to be 6.5 N. The specific weight of the liquid will be
Option A:	$6.5 \text{ kN} / \text{m}^3$
Option B:	6.6 kN / m ³
Option C:	$6.7 \text{ kN} / \text{m}^3$
Option D:	6.8 kN / m ³
Q4.	Find the total pressure on a rectangular plate of dimensions 2×3 m immersed in a fluid of specific gravity 0.65 at a depth of 6 m from the surface.
Option A:	22.9 N/cm ²
Option B:	45.8 N/cm2
Option C:	11.5 N/cm2
Option D:	None of the mentioned
Q5.	Does total pressure takes into the account force exerted by the fluid when it is in the dynamic motion?
Option A:	Yes
Option B:	No
Option C:	Depends on the conditions
Option D:	Depends on the type of Motion
Q6.	Which of the following is correct?
Option A:	Path lines of two particles in an one-dimensional flow can never intersect
Option B:	Path lines of two particles in an one-dimensional flow can never intersect if the two particles
1	move along the same direction
Option C:	Path lines of two particles in an one-dimensional flow can intersect only if the two particles
	move along the same direction
Option D:	Path lines of two particles in an one-dimensional flow can intersect only if the two particles
	move along different directions
07	For compressible fluid flow in a pipe, having decrease in specific gravity what will be the effect
Q7.	of decrease in diameter?

Option A:	It will cause increase in velocity
Option B:	It will cause decrease in velocity
Option C:	It remains constant
Option D:	None of the mentioned
• F ····· = ·	
Q8.	Which of the following is not an example of free vortex flow?
Option A:	Flow of a water through runner of a turbine
Option B:	Flow of liquid through a hole provided at the bottom
Option C:	A whirlpool in a river
Option D:	Flow of the liquid around a circular bend in a pipe
1	
Q9.	What is the formula to find the kinematic viscosity of a fluid?
Option A:	Dynamic Viscosity * Temperature
Option B:	Dynamic Viscosity / Density
Option C:	1/ dynamic viscosity
Option D:	Density / Dynamic Viscosity
Q10.	What is the nature of streamlines of free vortex flow?
Option A:	Concentric
Option B:	Non-concentric
Option C:	Linear
Option D:	None of the mentioned
-	
Q11.	Can the flow inside a nozzle be steady and uniform?
Option A:	Yes
Option B:	Never
Option C:	It can be steady but never uniform
Option D:	It can be uniform but never steady
Q12.	The results of which are more accurate; rectangular notch or triangular weir.
Option A:	Rectangular notch
Option B:	Triangular weir
Option C:	Both are equally accurate
Option D:	Rectangular weir
Q13.	Find the discharge through a rectangular orifice 2.2 m wide and 1.3 m deep fitted to a easier
	tank. The water level in a team is 2.5 m above the top edge of orifice.
Option A:	13.9 m ³ /s
Option B:	11.5 m ³ /s
Option C:	16.9 m ³ /s
Option D:	8.7 m ³ /s
Q14.	A weir generally used as spillway of dam is
Option A:	Narrow crested weir
Option B:	Broad crested weir
Option C:	Ogee weir
Option D:	Submerged weir
Q15.	When the water level in the downstream side of weir is at the top surface of weir, the weir is
	known as
Option A:	Narrow crested weir
Option B:	Broad crested weir
Option C:	Ogee weir
Option D:	Submerged weir

Q16.	The discharge through a siphon spillway is
Option A:	$C_d x a x \sqrt{2gH}$
Option B:	$\frac{C_{d} \times a \times H^{2} \sqrt{2g}}{C_{d} \times a \times H^{2} \sqrt{2g}}$
Option C:	$\frac{C_d \times d \times H}{C_d \times a \times H^{3/2} \sqrt{2g}}$
Option D:	$\frac{C_d \times a \times H}{C_d \times a \times H^{5/2} \sqrt{2g}}$
option 21	$C_d \times u \times \Pi = \sqrt{2g}$
Q17.	An internal mouthpiece is said to be running if the length of the mouthpiece is more than three times the diameter of orifice
Option A:	Free
Option B:	Partially
Option C:	Full
Option D:	None of above
Q18.	The loss of head at entrance in a pipe is
Option A:	V^2
Option A.	
Option B:	$\frac{2g}{0.5 * V^2}$
_	2g
Option C:	$\frac{0.3 \text{ V}}{2\text{g}}$ $\frac{0.375 \text{ V}^2}{2\text{g}}$
	$\frac{2g}{0.75 * V^2}$
Option D:	
	2g
Q19.	Which of the following statement is wrong?
Option A:	A flow whose streamline is represented by a curve, is called two dimensional flow.
Option B:	The total energy of a liquid particle is the sum of kinetic energy, potential energy and pressure
option D.	energy
Option C:	The length of divergent portion in venturimeter is equal to convergent portion
Option D:	A pitot tube is used to measure velocity of flow at the required point in a pipe.
Q20.	Coefficient of velocity is defined as the ratio of
Option A:	Actual velocity of jet at vena contracta to the theoretical velocity
Option B:	Area of jet at vena contracta to the area of orifice
Option C:	Actual discharge through an orifice to the theoretical discharge
Option D:	None of the above
021	In order to manage flam with contained on this installed in
Q21.	In order to measure flow with venturimeter, it is installed in Horizontal line
Option A: Option B:	Inclined line with flow upwards
Option D:	Inclined line with flow downwards
Option C: Option D:	Any direction and in any location
Option D.	
Q22.	A pitot tube is used to measure the
Option A:	Velocity of flow at the required point in a pipe
Option B:	Pressure difference between two points in a pipe
Option C:	Total pressure of liquid flowing in a pipe
Option D:	Discharge through a pipe
Q23.	The total head of liquid particle in motion is equal to
Option A:	Pressure energy + Kinetic energy + Potential energy
Option B:	Pressure energy – (Kinetic energy + Potential energy)
Option C:	Potential energy – (Pressure energy + Kinetic energy)
Option D:	Kinetic energy – (Pressure energy + Potential energy)
Q24.	The ratio of specific weight of a liquid to the specific weight of pure water at a standard

	temperature is called
Option A:	Density of liquid
Option B:	Specific gravity of liquid
Option C:	Compressibility of liquid
Option D:	Surface tension of liquid
Q25.	The specific gravity of water is taken as
Option A:	0.001
Option B:	0.01
Option C:	0.1
Option D:	1