University of Mumbai Examination 2020 under cluster 5 (APSIT)

Program: BE Electronics and Telecommunication Engineering Curriculum Scheme: Rev 16 (CBCGS) Examination: Second Year Semester IV Course Code: ECC 404 and Course Name: Signals and Systems

Time: 1 hour

Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	The type of systems which are characterized by input and the output quantized at
Q1.	certain levels are called as
Option A:	analog
Option B:	Discrete
Option D:	continuous
Option D:	Digital
Option D.	
Q2.	The type of systems which are characterized by input and the output capable of
X	taking any value in a particular set of values are called as
Option A:	Analog
Option B:	Discrete
Option C:	Digital
Option D:	Continuous
Q3.	A time invariant system is a system whose output
Option A:	increases with a delay in input
Option B:	decreases with a delay in input
Option C:	remains same with a delay in input
Option D:	vanishes with a delay in input
Q4.	A system is said to be defined as non causal, when
Option A:	the output at the present depends on the input at an earlier time
Option B:	the output at the present does not depend on the factor of time at all
Option C:	the output at the present depends on the input at the current time
Option D:	the output at the present depends on the input at a time instant in the future
Q5.	If $x(-t) = -x(t)$ then the signal is said to be
Option A:	Even signal
Option B:	Odd signal
Option C:	Periodic signal
Option D:	Non periodic signal
Q6.	When x(t) is said to be non periodic signal?
Option A:	If the equation $x(t) = x(t + T)$ is satisfied for all values of T
Option B:	If the equation $x(t) = x(t + T)$ is satisfied for only one value of T
Option C:	If the equation $x(t) = x(t + T)$ is satisfied for no values of T
Option D:	If the equation $x(t) = x(t + T)$ is satisfied for only odd values of T
Q7.	Y(t) = x(2t) is
Option A:	Compressed signal

University of Mumbai Examination 2020 under cluster 5 (APSIT)

- ·	
Option B:	Expanded signal
Option C:	Shifted signal
Option D:	Amplitude scaled signal by a factor of 2
Q8.	Check whether x $[n] = 7 \sin (6\pi n)$ is periodic and if it is period calculate its
	fundamental period?
Option A:	Periodic with fundamental period 6π
Option B:	Periodic with fundamental period 3
Option C:	Periodic with fundamental period 1
Option D:	Non periodic
Q9.	y(t) = sin(x(t-1)): Comment on its memory aspects.
Option A:	Having memory
Option B:	Needn't have memory
Option C:	Memoryless system
Option D:	Time invariant system
Q10.	Which of the following systems is stable?
Option A:	y(t) = log(x(t))
Option B:	$y(t) = \sin(x(t))$
Option C:	$y(t) = \exp(x(t))$
Option D:	y(t) = t x(t) + 1
Option D.	$\int (t) - t \Lambda(t) + 1$
Q11.	The signal x (t) = $e^{j(2t+\pi/4)}$ is
Option A:	Energy signal with $E\infty = 2$
Option B:	Power signal with $P\infty = 2$
Option D:	Power signal with $P\infty = 1$
Option D:	Energy signal with $E\infty = 1$
Option D.	
Q12.	The range for unit step function for $u(t - a)$, is
Option A:	t < a
Option B:	$t \le a$
Option C:	$t \ge a$ t = a
Option D:	t - a $t \ge a$
Option D.	
Q13.	Find the convolution sum of sequences $y_1[n] = (1, 2, 2)$ and $y_2[n] = (2, 1, 4)$
Option A:	Find the convolution sum of sequences $x_1[n] = (1, 2, 3)$ and $x_2[n] = (2, 1, 4)$.
Option A: Option B:	$\{2, 5, 12, 11, 12\}$
*	$\{2, 12, 5, 11, 12\}$
Option C:	$\{2, 11, 5, 12, 12\}$
Option D:	{-2, 5, -12, 11, 12}
014	The impulse memory h (t) of an LTI system is given by e^{-2t} (t) Whet is the t
Q14.	The impulse response h (t) of an LTI system is given by $e^{-2t}.u(t)$. What is the step
Ontion A.	response? $y_{1}(t) = 1/2 (1 - e^{-2t}) y_{2}(t)$
Option A:	$y(t) = \frac{1}{2} (1 - e^{-2t}) u(t)$
Option B:	$y(t) = \frac{1}{2} (1 - e^{-2t})$
Option C:	$y(t) = (1 - e^{-2t}) u(t)$
Option D:	$y(t) = 1/2 (e^{-2t}) u(t)$

University of Mumbai

Examination 2020 under cluster 5 (APSIT)

Q15.	Convolve the signals $e^{-2t} u(t)$, $e^{-3t} u(t)$. Determine the output?
Option A:	$y(t) = (e^{-2t} - e^{-3t})u(t)$
Option B:	$y(t) = (e^{-2t} - e^{-3t})$
Option C:	$y(t) = (e^{-3t} - e^{-2t})u(t)$
Option D:	$y(t) = (e^{-t} - e^{-3t})u(t)$
Q16.	Determine the Nyquist rate of the signal $x(t) = 1 + \cos 2000\pi t + \sin 4000\pi t$.
Option A:	2000 Hz
Option B:	4000 Hz
Option C:	1 Hz
Option D:	6000 Hz
Q17.	Which of the following is the process of 'aliasing'?
Option A:	Peaks overlapping
Option B:	Phase overlapping
Option C:	Amplitude overlapping
Option D:	Spectral overlapping
• •	
Q18.	Find the Fourier transform of $x(t) = f(t-2) + f(t+2)$.
Option A:	$2F(\omega)\cos 2\omega$
Option B:	$F(\omega)\cos 2\omega$
Option C:	$2F(\omega)\sin 2\omega$
Option D:	$F(\omega)\sin 2\omega$
•	
Q19.	For a stable system which of the following is correct?
Option A:	z < 1
Option B:	$ \mathbf{z} = 1$
Option C:	$ \mathbf{z} > 1$
Option D:	$ \mathbf{z} \neq 1$
-	
Q20.	Given $x(t)=e^{-t}u(t)$. Find the inverse Laplace transform of $e^{-3s} X(2s)$.
Option A:	$1/2 e^{-(t-3)/2} u(t+3)$
Option B:	$1/2 e^{-(t-3)/2} u(t-3)$
Option C:	$1/2 e^{(t-3)/2} u(t-3)$
Option D:	$1/2 e^{(t-3)/2} u(t+3)$
Q21.	The inverse Z-transform of $z/(z+1)^2$ is
Option A:	(-1) ⁿ⁺¹
Option B:	(-1) ⁿ⁻¹ n
Option C:	(-1) ⁿ⁻¹
Option D:	$(-1)^{n+1}$ n
Q22.	Where does the gibbs phenomenon occur?
Option A:	Gibbs phenomenon occurs near points of discontinuity
Option B:	Gibbs phenomenon occurs only near points of discontinuity
Option C:	Gibbs phenomenon occurs only ahead of points of discontinuity
Option D:	Gibbs phenomenon does not occur near points of discontinuity
•	
	·

University of Mumbai

Examination 2020 under cluster 5 (APSIT)

The Fourier transform of u (t) is B (j ω) and the Laplace transform of u (t) is A(s).
Which of the following is correct?
$B(j\omega) = A(s)$
$A(s) = 1/s$ but $B(j\omega) \neq 1/j\omega$
$A(s) \neq 1/s$ but $B(j\omega) \neq 1/j\omega$
$A(s) \neq 1/s$ but $B(j\omega) = 1/j\omega$
Which among the following constitute the state model of a system in addition to
state equations?
Input equations
Output equations
State trajectory
State vector
How many memory locations are used for storage of the output point of a
sequence of length M in direct form realization?
M+1
М
M-1
M*2