University of Mumbai

Examination 2020 under cluster 5 (APSIT)

Program: BE Electronics and Telecommunication Engineering
Curriculum Scheme: Rev 16 (CBCGS)
Examination: Second Year Semester IV
Course Code: ECC 404 and Course Name: Signals and Systems

Time: 1 hour

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	The type of systems which are characterized by input and the output quantized at certain levels are called as
Option A:	analog
Option B:	Discrete
Option C:	continuous
Option D:	Digital
Q2.	The type of systems which are characterized by input and the output capable of taking any value in a particular set of values are called as
Option A:	Analog
Option B:	Discrete
Option C:	Digital
Option D:	Continuous
Q3.	A time invariant system is a system whose output
Option A:	increases with a delay in input
Option B:	decreases with a delay in input
Option C:	remains same with a delay in input
Option D:	vanishes with a delay in input
Q4.	A system is said to be defined as non causal, when
Option A:	the output at the present depends on the input at an earlier time
Option B:	the output at the present does not depend on the factor of time at all
Option C:	the output at the present depends on the input at the current time
Option D:	the output at the present depends on the input at a time instant in the future
Q5.	If $\mathrm{x}(-\mathrm{t})=-\mathrm{x}(\mathrm{t})$ then the signal is said to be
Option A:	Even signal
Option B:	Odd signal
Option C:	Periodic signal
Option D:	Non periodic signal
Q6.	When $\mathrm{x}(\mathrm{t})$ is said to be non periodic signal?
Option A:	If the equation $\mathrm{x}(\mathrm{t})=\mathrm{x}(\mathrm{t}+\mathrm{T})$ is satisfied for all values of T
Option B:	If the equation $\mathrm{x}(\mathrm{t})=\mathrm{x}(\mathrm{t}+\mathrm{T})$ is satisfied for only one value of T
Option C:	If the equation $\mathrm{x}(\mathrm{t})=\mathrm{x}(\mathrm{t}+\mathrm{T})$ is satisfied for no values of T
Option D:	If the equation $\mathrm{x}(\mathrm{t})=\mathrm{x}(\mathrm{t}+\mathrm{T})$ is satisfied for only odd values of T
Q7.	$\mathrm{Y}(\mathrm{t})=\mathrm{x}(2 \mathrm{t})$ is
Option A:	Compressed signal

University of Mumbai

Examination 2020 under cluster 5 (APSIT)

Option B:	Expanded signal
Option C:	Shifted signal
Option D:	Amplitude scaled signal by a factor of 2
Q8.	Check whether $\mathrm{x}[\mathrm{n}]=7 \sin (6 \pi \mathrm{n})$ is periodic and if it is period calculate its fundamental period?
Option A:	Periodic with fundamental period 6π
Option B:	Periodic with fundamental period 3
Option C:	Periodic with fundamental period 1
Option D:	Non periodic
Q9.	$\mathrm{y}(\mathrm{t})=\sin (\mathrm{x}(\mathrm{t}-1))$: Comment on its memory aspects.
Option A:	Having memory
Option B:	Needn't have memory
Option C:	Memoryless system
Option D:	Time invariant system
Q10.	Which of the following systems is stable?
Option A:	$y(t)=\log (\mathrm{x}(\mathrm{t})$)
Option B:	$y(t)=\sin (x(t))$
Option C:	$y(t)=\exp (\mathrm{x}(\mathrm{t})$)
Option D:	$y(t)=t x(t)+1$
Q11.	The signal $\mathrm{x}(\mathrm{t})=\mathrm{e}^{\mathrm{j}(2 \mathrm{t}+\pi / 4)}$ is
Option A:	Energy signal with $\mathrm{E} \infty=2$
Option B:	Power signal with $\mathrm{P} \infty=2$
Option C:	Power signal with $\mathrm{P} \infty=1$
Option D:	Energy signal with $\mathrm{E} \infty=1$
Q12.	The range for unit step function for $u(t-a)$, is
Option A:	t < a
Option B:	$\mathrm{t} \leq \mathrm{a}$
Option C:	$\mathrm{t}=\mathrm{a}$
Option D:	$t \geq a$
Q13.	Find the convolution sum of sequences $\mathrm{x}_{1}[\mathrm{n}]=(1,2,3)$ and $\mathrm{x}_{2}[\mathrm{n}]=(2,1,4)$.
Option A:	\{2, 5, 12, 11, 12\}
Option B:	\{2, 12, 5, 11, 12\}
Option C:	$\{2,11,5,12,12\}$
Option D:	$\{-2,5,-12,11,12\}$
Q14.	The impulse response $h(t)$ of an LTI system is given by $\mathrm{e}^{-2 \mathrm{t}} \cdot \mathrm{u}(\mathrm{t})$. What is the step response?
Option A:	$y(t)=1 / 2\left(1-e^{-2 t}\right) u(t)$
Option B:	$y(t)=1 / 2\left(1-e^{-2 t}\right)$
Option C:	$\mathrm{y}(\mathrm{t})=\left(1-\mathrm{e}^{-2 t}\right) \mathrm{u}(\mathrm{t})$
Option D:	$\mathrm{y}(\mathrm{t})=1 / 2\left(\mathrm{e}^{-2 \mathrm{t}}\right) \mathrm{u}(\mathrm{t})$

University of Mumbai

Examination 2020 under cluster 5 (APSIT)

Q15.	Convolve the signals $\mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t}), \mathrm{e}^{-3 t} \mathrm{u}(\mathrm{t})$. Determine the output?
Option A:	$y(t)=\left(e^{-2 t}-e^{-3 t}\right) u(t)$
Option B:	$y(t)=\left(e^{-2 t}-e^{-3 t}\right)$
Option C:	$y(t)=\left(e^{-3 t}-e^{-2 t}\right) u(t)$
Option D:	$y(t)=\left(e^{-t}-e^{-3 t}\right) u(t)$
Q16.	Determine the Nyquist rate of the signal $\mathrm{x}(\mathrm{t})=1+\cos 2000 \pi \mathrm{t}+\sin 4000 \pi \mathrm{t}$.
Option A:	2000 Hz
Option B:	4000 Hz
Option C:	1 Hz
Option D:	6000 Hz
Q17.	Which of the following is the process of 'aliasing'?
Option A:	Peaks overlapping
Option B:	Phase overlapping
Option C:	Amplitude overlapping
Option D:	Spectral overlapping
Q18.	Find the Fourier transform of $\mathrm{x}(\mathrm{t})=\mathrm{f}(\mathrm{t}-2)+\mathrm{f}(\mathrm{t}+2)$.
Option A:	$2 \mathrm{~F}(\omega) \cos 2 \omega$
Option B:	$\mathrm{F}(\omega) \cos 2 \omega$
Option C:	$2 \mathrm{~F}(\omega) \sin 2 \omega$
Option D:	$F(\omega) \sin 2 \omega$
Q19.	For a stable system which of the following is correct?
Option A:	$\|z\|<1$
Option B:	$\|z\|=1$
Option C:	$\|\mathrm{z}\|>1$
Option D:	$\|z\| \neq 1$
Option A:	$1 / 2 \mathrm{e}^{-(\mathrm{t}-3) / 2} \mathrm{u}(\mathrm{t}+3)$
Option B:	$1 / 2 \mathrm{e}^{-(t-3) / 2} \mathrm{u}(\mathrm{t}-3)$
Option C:	$1 / 2 \mathrm{e}^{(t-3) / 2} \mathrm{u}(\mathrm{t}-3)$
Option D:	$1 / 2 \mathrm{e}^{(t-3) / 2} \mathrm{u}(\mathrm{t}+3)$
Q21.	The inverse Z-transform of $\mathrm{z} /(\mathrm{z}+1)^{2}$ is
Option A:	$(-1)^{\mathrm{n}+1}$
Option B:	$(-1)^{\mathrm{n}-1} \mathrm{n}$
Option C:	$(-1)^{\mathrm{n}-1}$
Option D:	$(-1)^{n+1} n$
Q22.	Where does the gibbs phenomenon occur?
Option A:	Gibbs phenomenon occurs near points of discontinuity
Option B:	Gibbs phenomenon occurs only near points of discontinuity
Option C:	Gibbs phenomenon occurs only ahead of points of discontinuity
Option D:	Gibbs phenomenon does not occur near points of discontinuity

University of Mumbai

Examination 2020 under cluster 5 (APSIT)

Q23.	The Fourier transform of $u(t)$ is $B(j \omega)$ and the Laplace transform of $u(t)$ is $A(s)$. Which of the following is correct?
Option A:	$\mathrm{B}(\mathrm{j} \omega)=\mathrm{A}(\mathrm{s})$
Option $\mathrm{B}:$	$\mathrm{A}(\mathrm{s})=1 / \mathrm{s}$ but $\mathrm{B}(\mathrm{j} \omega) \neq 1 / \mathrm{j} \omega$
Option C:	$\mathrm{A}(\mathrm{s}) \neq 1 / \mathrm{s}$ but $\mathrm{B}(\mathrm{j} \omega) \neq 1 / \mathrm{j} \omega$
Option D:	$\mathrm{A}(\mathrm{s}) \neq 1 / \mathrm{s}$ but $\mathrm{B}(\mathrm{j} \omega)=1 / \mathrm{j} \omega$
Q24.	Which among the following constitute the state model of a system in addition to state equations?
Option A:	Input equations
Option B:	Output equations
Option C:	State trajectory
Option D:	State vector
Q25.	How many memory locations are used for storage of the output point of a sequence of length M in direct form realization?
Option A:	$\mathrm{M}+1$
Option B:	M
Option C:	$\mathrm{M}-1$
Option D:	$\mathrm{M} * 2$

