University of Mumbai

Examination 2020 under cluster 5 (APSIT)

Program: Electronics and Telecommunication Engineering
 Curriculum Scheme: Revised 2016
 Examination: Second Year Semester III
 Course Code: ECC304 and Course Name: Circuit Theory and Network

Time: 1 hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Which of the following is correct Kirchhoff's Current Law equation at V_{1} of figure -1 ?
Option A:	$\left(\mathrm{V}_{1} / 5\right)+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / 5-7-3 \mathrm{~V}_{1}=0$
Option B:	$\left(\mathrm{V}_{1} / 5\right)+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / 5+7+3 \mathrm{~V}_{1}=0$
Option C:	$\left(\mathrm{V}_{1} / 5\right)+\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) / 5+7+3 \mathrm{~V}_{1}=0$
Option D:	$\left(\mathrm{V}_{1} / 5\right)+\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) / 5-7-3 \mathrm{~V}_{1}=0$
Q2.	Which of the following is simplified KCL equation ar V_{1} node of figure -1?
Option A:	$-13 \mathrm{~V}_{1}-\mathrm{V}_{2}=30$
Option B:	$13 \mathrm{~V}_{1}+\mathrm{V}_{2}=35$
Option C:	$13 \mathrm{~V}_{1}+\mathrm{V}_{2}=39$
Option D:	$-13 \mathrm{~V}_{1}-\mathrm{V}_{2}=35$
Q3.	Which of the following represent Voltage across inductor?
Option A:	$\mathrm{LxdV}_{\mathrm{L}}(\mathrm{t}) / \mathrm{dt}$
Option B:	Cxdi(t)/dt
Option C:	Lxdi(t)/dt
Option D:	Integration of Current in inductor
Q4.	Maximum number of possible trees for given graph is given by
Option A:	$\mid \mathrm{A} \mathrm{A}^{\text {T }}$ \|
Option B:	A Aa\|
Option C:	B x A
Option D:	Q x B
Q5.	Which of the following is correct the KVL equilibrium equation in graph theory?
Option A:	$\mathrm{B} \mathrm{Zb} \mathrm{B}{ }^{\text {T }} \mathrm{I}_{1}=\mathrm{B} \mathrm{Zb} \mathrm{Is}$
Option B:	$\mathrm{B} \mathrm{Zb} \mathrm{B}{ }^{\text {T }} \mathrm{I}_{1}=\mathrm{B} \mathrm{V} \mathrm{S}^{-}-\mathrm{B} \mathrm{Zb} \mathrm{IS}$

University of Mumbai

Examination 2020 under cluster 5 (APSIT)

Option C:	$\mathrm{B} \mathrm{Zb} \mathrm{I}_{1}=\mathrm{B} \mathrm{V}_{\mathrm{S}}-\mathrm{B} \mathrm{Zb} \mathrm{IS}$
Option D:	$\mathrm{Zb} \mathrm{B}{ }^{\text {T }} \mathrm{I}_{1}=\mathrm{B} \mathrm{V} \mathrm{S}^{-}-\mathrm{B} \mathrm{Zb} \mathrm{IS}$
Q6.	Figure-2 Which of the following is correct ohm's law equation of network shown in figure -2
Option A:	$3 \mathrm{~V}_{1}=6 \mathrm{I}+2 \mathrm{~V}_{1}$
Option B:	$\mathrm{V}_{1}=2 \mathrm{I}$
Option C:	$20-\mathrm{V}_{1}-6 \mathrm{I}+\mathrm{V} 1=0$
Option D:	$20-6 \mathrm{I}=0$
Q7.	Write KVL equation for I loop shown in figure-2.
Option A:	$\mathrm{V}_{1}-6 \mathrm{I}-3 \mathrm{~V}_{1}=0$
Option B:	$20-\mathrm{V}_{1}-6 \mathrm{I}=0$
Option C:	$20-6 \mathrm{I}-3 \mathrm{~V}_{1}=0$
Option D:	$20-2 \mathrm{I}-6 \mathrm{I}-3 \mathrm{~V}_{1}=0$
Q8.	If network consists of dependent sources, how to calculate Thevenin's equivalent resistor (R_{TH}) across load?
Option A:	Replace independent sources with equivalent resistance.
Option B:	Ratio of $\mathrm{V}_{\text {TH }}$ and $\mathrm{ISC}^{\text {c }}$
Option C:	Replace dependent sources with short circuit.
Option D:	Replace dependent sources with open circuit.
Q9.	In figure -3 , if steady state condition reached before switching position. The value of $i(t)$ at $t=0^{-}$is --- Figure - 3
Option A:	0
Option B:	2.5 A
Option C:	2 A
Option D:	3 A
Q10.	In figure - 3 if steady state condition reached before switching position. The

University of Mumbai

Examination 2020 under cluster 5 (APSIT)

	value of $\frac{d i(t)}{d t}$ at $\mathrm{t}=0^{+}$is ----.
Option A:	$2 \mathrm{~A} / \mathrm{sec}$
Option B:	$10 \mathrm{~A} / \mathrm{sec}$
Option C:	$12.5 \mathrm{~A} / \mathrm{sec}$
Option D:	-12.5 A / Sec
Q11.	If $100 \mathrm{u}(\mathrm{t})$ signal is applied to the $\mathrm{R}-\mathrm{C}$ network where $\mathrm{R}=1000 \mathrm{ohm}$ and $\mathrm{C}=1$ uF connected in series. Calculate time constant (τ).
Option A:	3 mSec
Option B:	2 mSec
Option C:	1 mSec
Option D:	63.2 mSec
Q12.	Time constant of series connected R-L network is -------.
Option A:	L/R
Option B:	R / L
Option C:	RxL
Option D:	LS
Q13.	If inductor and capacitor are connected in series then equivalent impedance is ---
Option A:	LS
Option B:	LS + 1/ CS
Option C:	CS + 1/LS
Option D:	(S + L + C)
Q14.	Transfer function of two port network is ----
Option A:	Ratio of response transform to an excitation transform at two different port.
Option B:	Ratio of excitation and response are measured at same port of the network.
Option C:	Ration of output current to input current
Option D:	Ratio of output voltage to input voltage
Q15.	If Polynomial $P(S)=S^{4}+S^{3}+2 S^{2}+3 S+2$ is tested using Routh's array. Elements of $1^{\text {st }}$ column of Routh's array are --
Option A:	1, 1, -1, 2
Option B:	1, 1, 5, 2
Option C:	1, 1, 2, 3
Option D:	1, 1, -1, 5, 2
Q16.	Determine location of poles of following transfer function $F(S)=\frac{S^{2}+1}{S^{3}+4 S}$
Option A:	0, 2 j
Option B:	1j, -1j
Option C:	0, 2j, -2j
Option D:	-3, -4

University of Mumbai

Examination 2020 under cluster 5 (APSIT)

Q17.	One of the conditions for two port network to be reciprocal is ------
Option A:	$\mathrm{Z}_{11}=\mathrm{Z}_{22}$
Option B:	$\mathrm{h}_{21}=-\mathrm{h}_{12}$
Option C:	$\mathrm{A}=\mathrm{D}$
Option D:	$\mathrm{Y}_{11}=\mathrm{Y}_{22}$
Q18.	Two port network are connected in parallel. The combination is to be represented as a single two-port network. The parameters obtained by adding individual are --
Option A:	Z-parameter matrix
Option B:	h-parameter matrix
Option C:	Y-parameter matrix
Option D:	ABCD-parameter matrix
Q19.	Z parameter of two port network are $\mathrm{Z}_{11}=20 \mathrm{ohm}, \mathrm{Z}_{22}=30$ ohm and $\mathrm{Z}_{12}=\mathrm{Z}_{21}=10$ ohm. Then network is \qquad
Option A:	Not reciprocal
Option B:	Reciprocal
Option C:	Symmetrical
Option D:	Neither reciprocal nor symmetrical
Q20.	A two port network is said to be symmetrical if ----
Option A:	Voltage to current ratio at one port is same as the voltage to current ratio at other port with one port open circuited.
Option B:	Voltage gain and current gain are same.
Option C:	Ratio of excitation at one port to response at other port is same if excitation and response is interchanged.
Option D:	Output voltage to input voltage
Q21.	Driving point admittance function $\mathrm{Y}(\mathrm{S})=\frac{\left(\frac{1}{R}\right) S}{S+1 / R C}$ is
Option A:	Series combination of two inductors
Option B:	Parallel combination of Inductor and capacitor
Option C:	Series combination of resistor and capacitor
Option D:	Series combination of two capacitors
Q22.	Function $\mathrm{F}(\mathrm{S})=\frac{(S-9)}{S^{2}-9 S+20}$ is not positive real function because ---
Option A:	A zero and poles are at right half of S-Plane
Option B:	Highest power of numerator and denominator is differ by more than unity
Option C:	Poles and zeros are not interlaced
Option D:	All poles lie on left half of S-Plane
Q23.	Realization of network using Foster-II can be obtained by -----
Option A:	Partial fraction expansion on $\mathrm{Z}(\mathrm{S})$

University of Mumbai

Examination 2020 under cluster 5 (APSIT)

Option B:	Partial fraction expansion on Y(S)
Option C:	Continued fraction expansion Z(S)
Option D:	Continued fraction expansion Y(S)
Q24.	Realization of network using Foster-I can be obtained by -----
Option A:	Partial fraction expansion on Z(S)
Option B:	Partial fraction expansion on Y(S)
Option C:	Continued fraction expansion Z(S)
Option D:	Continued fraction expansion Y(S)
Q25.	$\mathrm{Z}(\mathrm{S})=4+5$ S is impedance function consist of ----
Option A:	Capacitor=4 and \quad Resistor $=5$
Option B:	Resistor $=4 \quad$ and \quad Inductor $=5$
Option C:	Inductor $=4$ and Capacitor $=5$
Option D:	Capacitor $=4 \quad$ and Inductor=5

