University of Mumbai

Examination 2020 under cluster

\qquad (Lead College Shortname)
Program: Civil/MECH Engineering
Curriculum Scheme: Rev 2016
Examination: Second Year Semester IV
Course Code: CEC/ MEC 401 and Course Name: Applied Mathematics IV
Time: 1 hour

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	Find eigen values of $\mathrm{A}^{2}-6 \mathrm{~A}^{-1}+3 \mathrm{I} \quad, \quad \mathrm{A}=\left[\begin{array}{ccc}6 & 0 & 0 \\ -6 & 3 & 0 \\ 2 & -4 & 1\end{array}\right]$
Option A:	36,10,-2
Option B:	38,10,-2
Option C:	-38,11,-2
Option D:	38,10,2
Q2.	Find directional derivative of $\phi=x^{2}+y^{2}+z^{2}$ in the direction of $i-2 j+2 k$ at point $(1,2,3)$.
Option A:	10/3
Option B:	2/3
Option C:	-2
Option D:	2
Q3.	Solve, Maximize $z=x_{1}+4 x_{2}$ Subject to $\begin{aligned} 2 x_{1}+x_{2} & \leq 3 \\ 3 x_{1}+5 x_{3} & \leq 9 \\ x_{1}+3 x_{2} & \leq 5 \\ x_{1}, x_{2} & \geq 0 \end{aligned}$
Option A:	$x_{1}=0, x_{2}=\frac{5}{3}, z_{\max }=\frac{20}{3}$
Option B:	$x_{1}=0, x_{2}=-\frac{5}{3}, z_{\max }=\frac{20}{3}$
Option C:	$x_{1}=0, x_{2}=\frac{5}{3}, z_{\max }=\frac{21}{3}$
Option D:	$x_{1}=0, x_{2}=\frac{4}{3}, z_{\max }=\frac{20}{3}$

Examination 2020 under cluster \qquad (Lead College Shortname)

Q4.	Find mean and variance of Binomial distribution $(0.2+0.8)^{10}, q=0.2$
Option A:	2,1.6
Option B:	8,1.6
Option C:	7,16
Option D:	2,8
Q5.	Given $A=\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$, then
Option A:	A is derogatory and degree of minimal polynomial is 2
Option B:	A is non derogatory and degree of minimal polynomial is 3
Option C:	A is non derogatory and degree of minimal polynomial is 2
Option D:	A is derogatory and degree of minimal polynomial is 3
Q6.	If $\bar{F}=(3 x+2 y) i+(5 y-4 z) j+(a z+x) k$ is solenoidal, find a
Option A:	-2
Option B:	8
Option C:	-8
Option D:	2
Q7.	Dual of following LPP $\text { Maximize } z=2 x_{1}+3 x_{2}+x_{3}$ Subject to $\begin{gathered} x_{1}+2 x_{2}+x_{3} \leq 12 \\ 2 x_{1}+x_{3} \leq 5 \\ -x_{1}+2 x_{2} \leq-6 \\ x_{1}, x_{2}, x_{3} \geq 0 \end{gathered}$
Option A:	$\text { Minimize } w=12 y_{1}-5 y_{2}-6 y_{3}$ Subject to $\begin{gathered} y_{1}+2 y_{2}-y_{3} \geq 2 \\ 2 y_{1}+2 y_{2} \geq 3 \\ y_{1}+y_{2} \geq 1 \\ y_{1}, y_{2}, y_{3} \geq 0 \end{gathered}$
Option B:	$\text { Minimize } w=12 y_{1}+5 y_{2}+6 y_{3}$ Subject to $\begin{gathered} y_{1}+2 y_{2}-y_{3} \geq 2 \\ 2 y_{1}+2 y_{3} \geq 3 \\ y_{1}+y_{2} \geq 1 \\ y_{1}, y_{2}, y_{3} \geq 0 \end{gathered}$
Option C:	Minimize $w=12 y_{1}+5 y_{2}-6 y_{3}$

University of Mumbai

Examination 2020 under cluster \qquad (Lead College Shortname)

	Subject to $\begin{gathered} y_{1}+2 y_{2}-y_{3} \geq 2 \\ 2 y_{1}+2 y_{3} \geq 3 \\ y_{1}+y_{2} \geq 1 \\ y_{1}, y_{2}, y_{3} \geq 0 \end{gathered}$
Option D:	$\text { Minimize } w=12 y_{1}-5 y_{2}-6 y_{3}$ Subject to $\begin{gathered} y_{1}+2 y_{2}-y_{3} \geq-2 \\ 2 y_{1}+2 y_{3} \geq 3 \\ y_{1}+y_{2} \geq 1 \\ y_{1}, y_{2}, y_{3} \geq 0 \end{gathered}$
Q8.	Find characteristic equation of,$\quad A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 2\end{array}\right]$
Option A:	$\lambda^{3}+5 \lambda^{2}+7 \lambda-3=0$
Option B:	$\lambda^{3}-5 \lambda^{2}+7 \lambda-3=0$
Option C:	$\lambda^{3}-5 \lambda^{2}+7 \lambda+3=0$
Option D:	$\lambda^{3}-5 \lambda^{2}-7 \lambda-3=0$
Q9.	X is a Poisson Variate such that $P[X=2]=P[X=3]$ then variance of X is
Option A:	0
Option B:	3
Option C:	1
Option D:	5
Q10.	Work done in moving a particles in a conservative field under the force $\bar{F}=\left(2 x y+z^{3}\right) i+\left(x^{2}\right) j+\left(3 z^{2} x\right) k$ from the point $(1,-2,1)$ to $(3,1,4)$ is
Option A:	200 units
Option B:	204 units
Option C:	202 units
Option D:	206 units
Q11.	A random variable X has a probability density function $f(x)=x^{2} e^{-x} ; x \geq 0$. Then Mean of X is
Option A:	12
Option B:	6
Option C:	3
Option D:	4
Q12.	Using Cayley Hamilton Theorem Find A^{-1} in terms of $A, A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 1 & -5 \\ 0 & 0 & 1\end{array}\right]$

University of Mumbai

Examination 2020 under cluster \qquad (Lead College Shortname)

Option A:	$\frac{1}{5}\left(A^{2}+3 A+3 I\right)$
Option B:	$\frac{1}{5}\left(-A^{2}-3 A+3 I\right)$
Option C:	$\frac{1}{5}\left(-A^{2}+3 A-3 I\right)$
Option D:	$\frac{1}{5}\left(-A^{2}+3 A+3 I\right)$
Q13.	Mean and standard deviation of marks obtained by 50 students of college A are 79 and 9 respectively. Those of 60 students of college B are 75 and 7 respectively. The test Statistic Z to test the significant difference between the means of the two samples $H_{0}: \mu_{1}=\mu_{2}$ is
Option A:	2.562
Option B:	1.65
Option C:	13.33
Option D:	7.345
Q14.	Find eigen values of $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$
Option A:	1,2
Option B:	0,5
Option C:	5,1
Option D:	0,1
Q15.	Two sample of size 9 and 8 gave the the sum of squares of deviations from the respective means as 160 and 91 respectively .The calculated value of F -statistic is
Option A:	0.65
Option B:	1.54
Option C:	1.563
Option D:	0.64
Q16.	A random variable X has a probability mass function $p(x)=k x^{3} ; x=1,2,3,4$. Then k is
Option A:	1/10
Option B:	1/30
Option C:	1/100
Option D:	1
Q17.	Four unbiased coins are tossed 160 times The expected frequencies of getting $\{0,1,2,3,4\}$ heads are respectively
Option A:	0,10,20,30,40
Option B:	20,40,60,80,40
Option C:	20,30,60,30,20
Option D:	10,40,60,40,10

University of Mumbai

Examination 2020 under cluster
 \qquad (Lead College Shortname)

Q18.	The number of car accidents in a city was found to be 8,5,20,16,14,17,12, 6,7,15 per month respectively. Using χ^{2} test it was found that accidents do not occur equally during 10 months period. Find χ^{2} value.
Option A:	20.33
Option B:	21.33
Option C:	19.33
Option D:	23.33
Q19.	Find k if probability distribution function is given as $f(x)= \begin{cases}k \cdot x^{2} \text { for } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}$
Option A:	8/3
Option B:	8
Option C:	3/8
Option D:	$3 / 4$
Q20.	Find $5^{A}, A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
Option A:	$\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]$
Option B:	$\left[\begin{array}{cc}5 & 0 \\ 0 & 25\end{array}\right]$
Option C:	$\left[\begin{array}{cc}5 & 1 \\ 0 & 25\end{array}\right]$
Option D:	$\left[\begin{array}{cc}25 & 0 \\ 0 & 5\end{array}\right]$
Q21.	Use Stoke's Theorem to evaluate $\int_{C} \bar{F}$. $d \bar{r}$ where $\bar{F}=x^{2} i+x y j$ and C is boundary of rectangle $x=0, x=1, y=0, y=2$
Option A:	1/2
Option B:	2
Option C:	4
Option D:	6
Q22.	A sample of size 20 from a normal population has a mean 44 and standard deviation 6. Assuming the population mean as 42.the corresponding t-statistic is
Option A:	1.453
Option B:	6.67
Option C:	1.491
Option D:	6.33
Q23.	X is normally distributed variable with mean 30 and standard deviation 4, find $\mathrm{P}(\mathrm{X}<40)$. (Given: Area between $\mathrm{Z}=0$ to $\mathrm{Z}=2.5$ is 0.4938 .)
Option A:	0.9878
Option B:	0.4878

Examination 2020 under cluster (Lead College Shortname)

Option C:	0.9938
Option D:	0.0062
Q24.	Using Green's Theorem evaluate $\oint\left(x^{2}-y\right) d x+\left(2 y^{2}+x\right) d y$ around the boundary of the region $y=x^{2}, y=x$
Option A:	$1 / 3$
Option B:	3
Option C:	$1 / 6$
Option D:	$-1 / 3$
Q25.	If S is any closed surface enclosing a volume V and $\bar{A}=(a x) i+(b y) j+(c z) k$ then $\iint_{S} \bar{A} \cdot \hat{n} d s$ is
Option A:	$(a+b+c) V$
Option B:	$a+b+c$
Option C:	$a b c V$
Option D:	$a b c$

