Program: BE -Civil Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester VI

Course Code: CEC601 and Course Name: GEOTECHNICAL ENGINEERING-II

Time: 1 hour Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Which of the following clays behave like a dense sand
Option A:	Normally consolidated clay
Option B:	Under consolidated clay
Option C:	Over consolidated clay with a low OCR
Option D:	Over consolidated clay with a high OCR
Q2.	The time for a clay layer to achieve 90 % consolidation is 15 years. The time required to achieve 90% consolidation, if the layer were twice as thick, 3 times more permeable and 4 times more compressible would be
Option A:	70 years
Option B:	75 years
Option C:	80 years
Option D:	85 years
Q3.	The aim of doubling the pressure each time in the consolidation test is to see that the soil is always
Option A:	Over consolidated condition
Option B:	Normally consolidated condition
Option C:	Under consolidated condition
Option D:	remains saturated
Q4.	A direct shear test was conducted on a cohesionless soil (c = 0) specimen under a normal stress of 200kN/m2. The specimen failed at a shear stress of 100 kN/m2. The angle of internal friction of the soil (degree) is
Option A:	26.6
Option B:	29.5
Option C:	30.0
Option D:	32.6
Q5.	In a plot between normal stress on X axis and shear stress on Y axis, if the failure envelope passes through the origin and has an angle of shearing resistance, it indicates

Ontine A.	Cabasina asil
Option A:	Cohesive soil
Option B:	Cohesionless soil
Option C:	Pure clay
Option D:	Plastic soil
Q6.	The triaxial test in which the drainage of the specimen is permitted in both
	consolidation stage and shearing stage is called
Option A:	Unconsolidated Undrained test
Option B:	Consolidated Undrained test
Option C:	Consolidated Drained test
Option D:	Unconsolidated Drained test
Q7.	What will be the factor of safety with respect to cohesion of a clay slope laid at 1
	in 2 to a height of 10 m, if the angle of internal friction $\phi = 10^{\circ}$; c = 25 kN/m ²
	and $\gamma = 19 \text{ kN/m}^3$?
Option A:	4.34
Option B:	2.06
Option C:	1.02
Option D:	3.06
Q8.	The depth factor D _f for toe failure is
Option A:	D _f > 1
Option B:	D _f < 1
Option C:	$D_f = 1$
Option D:	$D_f = 0$
Q9.	The following assumption is not made for the friction circle method of slope
	stability analysis
Option A:	Friction is fully mobilized
Option B:	Total stress analysis is applicable
Option C:	The resultant is tangential to the friction circle
Option D:	The resultant passes through the centre of friction circle
Ориси ви	The resultant pulses through
Q10.	Assumption of Rankines theory of earth pressure that the back of the wall is
Option A:	Plane and Rough
Option B:	Vertical and Rough
Option C:	Plane and Smooth
Option D:	Vertical and Smooth
Option b.	Tordical and Smooth
Q11.	If the no movement of the wall from the back fill then the pressure acting on the
Q11.	retaining wall is
Option A:	Active Earth pressure
Option A:	Passive Earth pressure
•	Positive earth Pressure
Option C:	
Option D:	At Rest earth pressure

Q12.	What is the value of active earth pressure at the base of retaining wall when
	water table at ground surface?
	Where, K_a coefficient of active earth pressure, $\gamma' == unit$ weight of submerged
	soil, H is height of retaining wall, γ _w is unit weight of water
Option A:	$P_a = K_a \gamma' H + \gamma_w H$
Option B:	$P_a = K_a \gamma' H - \gamma_w H$
Option C:	$P_a = 2C K_a \gamma' H + \gamma_w H$
Option D:	$P_a = C K_a \gamma' H + \gamma_w H$
•	
Q13.	Active pressure in soil is associated with
Option A:	Lateral expansion of the soil
Option B:	Lateral compression of the soil
Option C:	Zero lateral strain
Option D:	Zero lateral stress
•	
Q14.	The earth pressure behind a bridge abutment is
Option A:	Active
Option B:	Passive
Option C:	At rest
Option D:	Constant Always and everywhere
·	·
Q15.	The lateral earth pressure coefficient of a soil, K_a for active state, K_p for passive
	state and K _o for at rest state condition, compare as
Option A:	$K_a < K_o < K_p$
Option B:	$K_0 < K_p < K_a$
Option C:	$K_p < K_a < K_o$
Option D:	$K_p < K_o < K_a$
·	
Q16.	A strip footing is resting on the ground surface of a pure clay bed having an
	undrained cohesion Cu. The ultimate bearing capacity of the footing is equal to
Option A:	2πCu
Option B:	πCu
Option C:	(π+1) Cu
Option D:	(π+2) Cu
·	
Q17.	If the angle of internal friction is 20° then what type of shear failure is expected
Option A:	General Shear Failure
Option B:	Local Shear Failure
Option C:	Punching Shear Failure
Option D:	Mixed Shear Failure
Q18.	The permissible settlement is maximum in case of
Option A:	Isolated footing on clay
Option B:	Raft on sand
Option C:	Isolated footing on sand
Option D:	Raft on clay
	1 22

Q19.	If the ratio of width of foundation to width of plate is 5 times the ratio of
-	corresponding settlement in clayey soil is
Option A:	1:1
Option B:	1:5
Option C:	1.5:1
Option D:	5:1
·	
Q20.	The observed value of N in static cone penetration test is corrected by
Option A:	Overburden and Dilatancy /submergence
Option B:	Effective pressure
Option C:	Pore pressure
Option D:	No correction required
•	·
Q21.	According to IS code, there are types of failures of soil support beneath the foundation
Option A:	2
Option B:	4
Option C:	3
Option D:	5
Q22.	The piles that are used for protecting structures from ships and floating object is
Option A:	Anchor piles
Option B:	Fender piles
Option C:	Compaction piles
Option D:	Batter piles
-	
Q23.	When a pile hammer hits the pile, the total driving energy is equal to
Option A:	Weight of hammer times the height of the drop
Option B:	Weight of the ramming time times the height of the stroke
Option C:	Sum of the impact of the ram
Option D:	Sum of the impact of ram plus the energy delivered by the explosion
Q24.	Settlement of Pile group in clay can be computed on assumption that
Option A:	The Clay contained between the Bottom of the piles and their lower third point
> p	is in-compressible
Option B:	The Clay contained between the top of the piles and their lower third point is in-
•	compressible.
Option C:	The Clay contained between the top of the c piles and their lower third point is
	compressible
Option D:	The Clay contained between the top of the c piles and their lower fourth point is
•	in-compressible
	·
Q25.	Which pile is used to resist horizontal pull of structure?
	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Option A:	Sheet Pile
Option B:	Fender Pile
Option C:	Anchor Pile
Option D:	Batter Pile