Program: BE Civil Engineering

Curriculum Scheme: Revised **2012**

Examination: Third Year Semester V

Course Code: CEC501 and Course Name: SA II

Time: 1hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	How many degrees of freedom are counted for a roller support while calculating
-	Degree of kinematic indeterminacy
Option A:	0
Option B:	1
Option C:	2
Option D:	3
Q2.	For a two-hinged arch, if one of the supports settles down vertically, then the
	horizontal thrust
Option A:	is increased
Option B:	is decreased
Option C:	Remains unchanged
Option D:	Becomes zero
Q3.	Degree of kinematic indeterminacy of a pin-jointed plane frame is given by
Option A:	2j – r
Option B:	j - 2r
Option C:	3j – r
Option D:	2j + r
Q4.	Which of the following method of structural analysis is a force method
Option A:	Slope-Deflection method
Option B:	Moment distribution method
Option C:	Clapeyrons theorem method
Option D:	Stiffness method
Q5.	If temperature changes occurs then the deflection of each member in truss,
	where α =Coefficient of thermal expansion, t _c = rise in temp; N= Force in member
	& L= length of member is given by
Option A:	$\Delta = \alpha \sum (t_c N L)$
Option B:	$\Delta = \alpha \sum (t_c N L)^2$
Option C:	$\Delta = \alpha^2 \sum (t_c N L)$
Option D:	$\Delta = \alpha \sum (t_c N L)/2$

06	D1 and D2 are external load A1 and A2 are displacement exused when force is
Q6.	P1 and P2 are external load, $\Delta 1$ and $\Delta 2$ are displacement caused when force is increased from P1 to P2, what will be the external work performed during
	application of load?
Option A:	$1/2 (p1 \Delta 1 + p2 \Delta 2)$
Option B:	$1/2 (p_2 \Delta 1 + p_1 \Delta 2)$
-	
Option C:	$p1 \Delta 1 + p2 \Delta 2$
Option D:	p2 Δ1 + p1 Δ2
Q7.	How is a truss, which undergoes rigid body translation for arbitrary load
-	classified as
Option A:	Determinate structure
Option B:	Geometrically unstable structure
Option C:	Statically unstable structure
Option D:	Structurally unstable structure
Q8.	In flexibility method, If L is the length of beam, and then what are the upper and
	lower limits of the above integration?
Option A:	–L, L
Option B:	–L, 0
Option C:	0, L
Option D:	½ L, L
Q9.	In flexibility method, the unknown quantities are, in stiffness method the
Q.J.	unknown quantities are respectively.
Option A:	Displacement, Force
Option B:	Force, Displacement
Option C:	Angle, Moment
Option D:	Moment, Angle
Q10.	The deformation of a spring produced by a unit load is called
Option A:	Stiffness
Option B:	Flexibility
Option C:	Influence coefficient
Option D:	Unit strain
011	
Q11.	The lack of fit if it is induced, all the members in the redundant frame will be in
Option A:	Stress
Option B:	Tension
Option C:	Compression
Option D:	zero force state
Q12.	The flexibility coefficient represents
Option A:	displacement caused by a unit positive redundant action
Option B:	displacement caused by any load
Option C:	redundancy caused by the external reaction
Option D:	any load in the member
option D.	

Q13.	The order of matrix is defined in the flexibility is based on
Option A:	Number of Redundant present in the beam externally and available equilibrium
	equation
Option B:	Number of Redundant present in the beam internally
Option C:	Number of unknown reaction
Option D:	Equilibrium equation
Q14.	The ratio of the stiffness of a beam at the near end when the far end is hinged to
	the stiffness of the beam at the near end when the far end is fixed is
Option A:	1/2
Option B:	1
Option C:	1/4
Option D:	3/4
Q15.	Moment distribution method is best suited for
Option A:	Indeterminate pin jointed truss
Option B:	Rigid frames
Option C:	Space Frame
Option D:	Composite structure
Q16.	In moment distribution method, the sum of distribution factors of all the
	members meeting at any joint is always
Option A:	Zero
Option B:	Less than 1
Option C:	1
Option D:	Greater than 1
Q17.	The ratio of stiffness factor for the member to the total stiffness of all the
	member at the joint is called as
Option A:	Stiffness factor
Option B:	Shear factor
Option C:	Carry over factor
Option D:	Distribution factor
Q18.	If the free and of a cantilever of span L and flexural rigidly EI, undergoes a unit
	displacement (without rotation), what is the bending moment induced at fixed
	end?
Option A:	3EI/L ²
Option B:	4EI/L ²
Option C:	5EI/L ²
Option D:	6EI/L ²
Q19.	A rigid frame ABCD has AB member as overhang, with end A being free. Support
	C and D are fixed. DB is vertical member and BC is horizontal member.
	DB=BC=5m.If the moment equation are given by. M_{DB} =0.4EI Θ B, M_{BD} =0.8EI Θ B
	DB=BC=5m.If the moment equation are given by. M_{DB} =0.4EI Θ B, M_{BD} =0.8EI Θ B

	M_{BA} =54 , M_{Bc} =-135+1.6EI Θ B , M_{Bc} =135+1.6EI Θ B, then rotation at B is given by
Option A:	-112.5/El
Option B:	33.75/EI
Option C:	0
Option D:	10/EI
•	
Q20.	If the displacement at the co-ordinate " i" due to unit force at co-ordinate j is δ_{ii}
	then according to flexibility method
Option A:	$\delta_{ij} = \delta_{ij}$
Option B:	$\delta_{ij \ge} \delta_{ij}$
Option C:	$\delta_{ij \leq \delta_{ij}}$
Option D:	
optionDi	δ _{ij≠} δ _{ij}
Q21.	The shape factor does not depend on
Option A:	Material Properties
Option B:	Cross-sectional shape
Option C:	Moment of resistance
Option D:	Section modulus
Q22.	The plastic modulus of a section is 4.8×10 ⁻⁴ m ³ . The shape factor is 1.2. The
	plastic moment capacity of the section is 120kN-m. The yield stress of the
	materialis
Option A:	100 Mpa
Option B:	250 Mpa
Option C:	240 Mpa
Option D:	300 Mpa
Q23.	A cantilever beam of length I, width b and depth d is loaded with a concentrated
<u> </u>	vertical load at the tip. If yielding starts at a load P, the collapse load shall be
Option A:	2.0 P
Option B:	1.5 P
Option C:	P
Option D:	1.2 P
Q24.	In a plastic analysis of structures, the segment between any two successive
Q24.	plastic hinges is assumed to deform as
Option A:	A plastic material
Option B:	A rigid material
Option C:	An elastic material
Option D:	An inelastic material
Q25.	What is plastic hinge
Q2J.	

Option B:	zone of yielding due to flexure in a structural member
Option C:	zone of non-yielding due to flexure in a structural member
Option D:	zone of yielding due to twisting in a structural member